Skip to main content

Advertisement

Log in

A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy

  • Original Article
  • Published:
Annals of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Objective

Accurate delineation of renal regions of interest (ROIs) is critical for the assessment of renal function in pediatric dynamic renal scintigraphy (DRS). The purpose of this study was to develop and evaluate a deep learning (DL) model that can fully automatically delineate renal ROIs and calculate renal function in pediatric 99mTechnetium-ethylenedicysteine (99mTc-EC) DRS.

Methods

This study retrospectively analyzed 1,283 pediatric DRS data at a single center from January to December 2018. These patients were divided into training set (n = 1027), validation set (n = 128), and testing set (n = 128). A fully automatic segmentation of ROIs (FASR) model was developed and evaluated. The pixel values of the automatically segmented ROIs were calculated to predict renal blood perfusion rate (BPR) and differential renal function (DRF). Precision, recall rate, intersection over union (IOU), and Dice similarity coefficient (DSC) were used to evaluate the performance of FASR model. Intraclass correlation (ICC) and Pearson correlation analysis were used to compare the consistency of automatic and manual method in assessing the renal function parameters in the testing set.

Results

The FASR model achieved a precision of 0.88, recall rate of 0.94, IOU of 0.83, and DSC of 0.91. In the testing set, the r values of BPR and DRF calculated by the two methods were 0.94 (P < 0.01) and 0.97 (P < 0.01), and the ICCs (95% confidence interval CI) were 0.94 (0.90—0.96) and 0.94 (0.91—0.96).

Conclusion

We propose a reliable and stable DL model that can fully automatically segment ROIs and accurately predict renal function in pediatric 99mTc-EC DRS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data are contained within the article, and the datasets used and/or analyzed during the current study are available from the corresponding authors on reasonable request.

References

  1. Çamlar SA, Deveci N, Soylu A, Türkmen MA, Özmen D, Çapakaya G, et al. The role of dynamic renal scintigraphy on clinical decision making in hydronephrotic children. Saudi J Kidney Dis Transpl. 2017;28:76–80.

    Article  PubMed  Google Scholar 

  2. Arefnia M, Masoumi N, Ghodsirad MA, Moghaddam EJ, Hosseinzadeh E, Hojjati M. Prognostic value of dynamic renal scan with 99mTc-EC in patients with kidney transplantation: a prospective descriptive study. Nucl Med Commun. 2021;42:469–75.

    Article  CAS  PubMed  Google Scholar 

  3. Fujita T, Nishi M, Ishii D, Matsumoto K, Yoshida K, Iwamura M. Renal functional outcome after laparoscopic partial nephrectomy using dynamic renal scintigraphy. Can J Urol. 2020;27:10402–6.

    PubMed  Google Scholar 

  4. Caglar M, Gedik GK, Karabulut E. Differential renal function estimation by dynamic renal scintigraphy: influence of background definition and radiopharmaceutical. Nucl Med Commun. 2008;29:1002–5.

    Article  PubMed  Google Scholar 

  5. Oh SJ, Moon DH, Kang W, Park YS, Park T, Kim KS. Supranormal differential renal function is real but may be pathological: assessment by 99m technetium mercaptoacetyltriglycine renal scan of congenital unilateral hydronephrosis. J Urol. 2001;165:2300–4.

    Article  CAS  PubMed  Google Scholar 

  6. Santos AI, Violante L, Carmona S, Prata A, Rodrigues Victor M, Santos JG, et al. Interobserver agreement on cortical tracer transit in 99mTc-MAG3 renography applied to congenital hydronephrosis. Nucl Med Commun. 2017;38:124–8.

    Article  PubMed  Google Scholar 

  7. Lezaic L, Hodolic M, Fettich J, Grmek M, Milcinski M. Reproducibility of 99mTc-mercaptoacetyltriglycine renography: population comparison. Nucl Med Commun. 2008;29:695–704.

    Article  CAS  PubMed  Google Scholar 

  8. Gloger O, Tönies KD, Liebscher V, Kugelmann B, Laqua R, Völzke H. Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry. IEEE Trans Med Imaging. 2012;31:312–25.

    Article  PubMed  Google Scholar 

  9. Park J, Bae S, Seo S, Park S, Bang JI, Han JH, et al. Measurement of Glomerular Filtration Rate using Quantitative SPECT/CT and Deep-learning-based Kidney Segmentation. Sci Rep. 2019;9:4223.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Blum ES, Porras AR, Biggs E, Tabrizi PR, Sussman RD, Sprague BM, et al. Early detection of ureteropelvic junction obstruction using signal analysis and machine learning: a dynamic solution to a dynamic problem. J Urol. 2018;199:847–52.

    Article  PubMed  Google Scholar 

  11. Rahimi A, Hosntalab M, Babapour Mofrad F, Amoui M, Bagci U. An automatic segmentation framework for computer-assisted renal scintigraphy procedure. Med Biol Eng Comput. 2023;61:285–95.

    Article  PubMed  Google Scholar 

  12. Tian C, Zheng X, Han Y, Sun X, Chen K, Huang Q. A semi-automated region of interest detection method in the scintigraphic glomerular filtration rate determination for patients with abnormal low renal function. Clin Nucl Med. 2013;38:855–62.

    Article  PubMed  Google Scholar 

  13. Gordon I, Piepsz A, Sixt R. Guidelines for standard and diuretic renogram in children. Eur J Nucl Med Mol Imaging. 2011;38:1175–88.

    Article  PubMed  Google Scholar 

  14. Tartaglione G, Townsend DM, Bassi PF, Delgado Bolton RC, Giammarile F, Rubello D. Diuresis renography in equivocal urinary tract obstruction. A Historical Perspective Biomed Pharmacother. 2019;116: 108981.

    Article  PubMed  Google Scholar 

  15. Tartaglione G, Foschi N, Recupero SM, Ieria FP, Tarantino G, Bassi P. Advantages of gravity-assisted diuretic renogram: F + 10 (seated position) method. Nucl Med Commun. 2021;42:602–10.

    Article  PubMed  Google Scholar 

  16. Kabasakal L, Turoğlu HT, Onsel C, Ozker K, Uslu I, Atay S, et al. Clinical comparison of technetium-99m-EC, technetium-99m-MAG3 and iodine-131-OIH in renal disorders. J Nucl Med. 1995;36:224–8.

    CAS  PubMed  Google Scholar 

  17. Danilczuk A, Nocun A, Chrapko B. Normal ranges of renal function parameters for 99mTc-EC renal scintigraphy. Nucl Med Rev Cent East Eur. 2020;23:53–7.

    Article  PubMed  Google Scholar 

  18. Cao H, Wang Y, Chen J, Jiang D, Zhang X, Tian Q, et al. In: Karlinsky L, Michaeli T, Nishino K, editors., et al., Computer vision—ECCV 2022 workshops. Cham: Springer Nature Switzerland; 2023. p. 205–18.

    Chapter  Google Scholar 

  19. Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell. 2018;40:834–48.

    Article  PubMed  Google Scholar 

  20. Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin transformer: hierarchical vision transformer using shifted windows. IEEE/CVF Int Conf Comput Vis. 2021;2021:9992–10002.

    Google Scholar 

  21. Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.

  22. Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32:8026–37.

    Google Scholar 

  23. Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation. Int J Comput Vis. 2008;77:157–73.

    Article  Google Scholar 

  24. Sachpekidis C, Schepers R, Marti M, Kopp-Schneider A, Alberts I, Keramida G, et al. 99mTc-MAG3 diuretic renography: intra- and inter-observer repeatability in the assessment of renal function. Diagnostics. 2020;10:709–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lythgoe MF, Gordon I, Khader Z, Smith T, Anderson PJ. Assessment of various parameters in the estimation of differential renal function using technetium-99m mercaptoacetyltriglycine. Eur J Nucl Med. 1999;26:155–62.

    Article  CAS  PubMed  Google Scholar 

  26. Tomaru Y, Inoue T, Oriuchi N, Takahashi K, Endo K. Semi-automated renal region of interest selection method using the double-threshold technique: inter-operator variability in quantitating 99mTc-MAG3 renal uptake. Eur J Nucl Med. 1998;25:55–9.

    Article  CAS  PubMed  Google Scholar 

  27. Ismaili K, Hall M, Ham H, Piepsz A. Evolution of individual renal function in children with unilateral complex renal duplication. J Pediatr. 2005;147:208–12.

    Article  PubMed  Google Scholar 

  28. Majd M, Bar-Sever Z, Santos AI, De Palma D. The SNMMI and EANM procedural guidelines for diuresis renography in infants and children. J Nucl Med. 2018;59:1636–40.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Inoue Y, Yoshikawa K, Yoshioka N, Watanabe T, Saegusa S, Kaneko Y, et al. Evaluation of renal function with 99mTc-MAG3 using semiautomated regions of interest. J Nucl Med. 2000;41:1947–54.

    CAS  PubMed  Google Scholar 

  30. Zheng X, Wei W, Huang Q, Song S, Huang G. Automated region of interest detection method in scintigraphic glomerular filtration rate estimation. IEEE J Biomed Health Inform. 2019;23:787–94.

    Article  PubMed  Google Scholar 

  31. Fiev D, Proskura A, Khokhlachev S, Taratkin M, Borisov V, Chernenkiy M, et al. A prospective study of novel mathematical analysis of the contrast-enhanced computed tomography vs renal scintigraphy in renal function evaluation. European Journal of Radiology. 2020; 130.

  32. Sivakumar VN, Indiran V, Sathyanathan BP. Dynamic MRI and isotope renogram in the functional evaluation of pelviureteric junction obstruction: a comparative study. Türk Üroloji Dergisi/Turkish J Urol. 2018;44:45–50.

    Article  Google Scholar 

  33. Claudon M, Durand E, Grenier N, Prigent A, Balvay D, Chaumet-Riffaud P, et al. Chronic urinary obstruction: evaluation of dynamic contrast-enhanced MR urography for measurement of split renal function. Radiology. 2014;273:801–12.

    Article  PubMed  Google Scholar 

  34. Lin KJ, Huang JY, Chen YS. Fully automatic region of interest selection in glomerular filtration rate estimation from 99mTc-DTPA renogram. J Digit Imaging. 2011;24:1010–23.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Garcia EV, Folks R, Pak S, Taylor A. Totally automatic definition of renal regions of interest from 99mTc-MAG3 renograms: validation in patients with normal kidneys and in patients with suspected renal obstruction. Nucl Med Commun. 2010;31:366–74.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the staff of the department of Nuclear Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhanquan Sun, Hongliang Fu or Hui Wang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, X., Zhu, G., Gou, J. et al. A fully automatic deep learning-based method for segmenting regions of interest and predicting renal function in pediatric dynamic renal scintigraphy. Ann Nucl Med 38, 382–390 (2024). https://doi.org/10.1007/s12149-024-01907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12149-024-01907-7

Keywords

Navigation