High efficacy of particle beam therapies against tumors under hypoxia and prediction of the early stage treatment effect using 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography

Author:

Makino AkiraORCID,Kume Kyo,Mori Tetsuya,Tsujikawa Tetsuya,Asai Tatsuya,Okazawa Hidehiko,Kiyono Yasushi

Abstract

Abstract Objective Compared with radiation therapy using photon beams, particle therapies, especially those using carbons, show a high relative biological effectiveness and low oxygen enhancement ratio. Using cells cultured under normoxic conditions, our group reported a greater suppressive effect on cell growth by carbon beams than X-rays, and the subsequent therapeutic effect can be predicted by the cell uptake amount of 3'-deoxy-3'-[18F]fluorothymidine (18F-FLT) the day after treatment. On the other hand, a hypoxic environment forms locally around solid tumors, influencing the therapeutic effect of radiotherapy. In this study, the influence of tumor hypoxia on particle therapies and the ability to predict the therapeutic effect using 18F-FLT were evaluated. Methods Using a murine colon carcinoma cell line (colon 26) cultured under hypoxic conditions (1.0% O2 and 5.0% CO2), the suppressive effect on cell growth by X-ray, proton, and carbon irradiation was evaluated. In addition, the correlation between decreased 18F-FLT uptake after irradiation and subsequent suppression of cell proliferation was investigated. Results Tumor cell growth was suppressed most efficiently by carbon-beam irradiation. 18F-FLT uptake temporarily increased the day after irradiation, especially in the low-dose irradiation groups, but then decreased from 50 h after irradiation, which is well correlated with the subsequent suppression on tumor cell growth. Conclusions Carbon beam treatment shows a strong therapeutic effect against cells under hypoxia. Unlike normoxic tumors, it is desirable to perform 18F-FLT positron emission tomography 2–3 days after irradiation for early prediction of the treatment effect. Graphical Abstract

Funder

The Wakasa Wan Energy Research Center

University of Fukui

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3