Advances in Corrosion-Resistant Thermal Spray Coatings for Renewable Energy Power Plants: Part II—Effect of Environment and Outlook

Author:

Sadeghi Esmaeil,Markocsan Nicolaie,Joshi Shrikant

Abstract

AbstractHigh-temperature corrosion of critical components such as water walls and superheater tubes in biomass/waste-fired boilers is a major challenge. A dense and defect-free thermal spray coating has been shown to be promising to achieve a high electrical/thermal efficiency in power plants. The field of thermal spraying and quality of coatings have been progressively evolving; therefore, a critical assessment of our understanding of the efficacy of coatings in increasingly aggressive operating environments of the power plants can be highly educative. The effects of composition and microstructure on high-temperature corrosion behavior of the coatings were discussed in the first part of the review. The present paper that is the second part of the review covers the emerging research field of performance assessment of thermal spray coatings in harsh corrosion-prone environments and provides a comprehensive overview of the underlying high-temperature corrosion mechanisms that lead to the damage of exposed coatings. The application of contemporary analytical methods for better understanding of the behavior of corrosion-resistant coatings is also discussed. A discussion based on an exhaustive review of the literature provides an unbiased commentary on the advanced accomplishments and some outstanding issues in the field that warrant further research. An assessment of the current status of the field, the gaps in the scientific understanding, and the research needs for the expansion of thermal spray coatings for high-temperature corrosion applications is also provided.

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Surfaces, Coatings and Films,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3