Modelling Uncertainties and Sensitivity Analysis of Landslide Susceptibility Prediction under Different Environmental Factor Connection Methods and Machine Learning Models
Author:
Publisher
Springer Science and Business Media LLC
Subject
Civil and Structural Engineering
Link
https://link.springer.com/content/pdf/10.1007/s12205-023-2430-9.pdf
Reference53 articles.
1. Abedi GH, Feizizadeh B (2021) GIS-based ensemble modelling of fuzzy system and bivariate statistics as a tool to improve the accuracy of landslide susceptibility mapping. Natural Hazards 107(2):1981–2014, DOI: https://doi.org/10.1007/s11069-021-04673-1
2. Achour Y, Pourghasemi HR (2020) How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers 11(3):871–883, DOI: https://doi.org/10.1016/j.gsf.2019.10.001
3. Adnan MSG, Rahman MS, Ahmed N, Ahmed B, Rabbi MF, Rahman RM (2020) Improving spatial agreement in machine learning-based landslide susceptibility mapping. Remote Sensing 12(20):3347, DOI: https://doi.org/10.3390/rs12203347
4. Aghdam IN, Pradhan B, Panahi M (2017) Landslide susceptibility assessment using a novel hybrid model of statistical bivariate methods (FR and WOE) and adaptive neuro-fuzzy inference system (ANFIS) at southern Zagros Mountains in Iran. Environmental Earth Sciences 76(6):237, DOI: https://doi.org/10.1007/s12665-017-6558-0
5. Akinci H, Yavuz Ozalp A (2021) Landslide susceptibility mapping and hazard assessment in Artvin (Turkey) using frequency ratio and modified information value model. Acta Geophysica 69(3):725–745, DOI: https://doi.org/10.1007/s11600-021-00577-7
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Landslide susceptibility assessment using hybrid integration of best-first decision tree and machine learning ensembles;2024-08-22
2. Modelling landslide susceptibility prediction: A review and construction of semi-supervised imbalanced theory;Earth-Science Reviews;2024-03
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3