A Hybrid Numerical-ML Model for Predicting Geological Risks in Tunneling with Electrical Methods
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s12205-024-0066-z.pdf
Reference54 articles.
1. Abidin MZ, Wijeyesekera D, Saad R, Ahmad F (2013) The influence of soil moisture content and grain size characteristics on its field electrical resistivity. Electronic Journal of Geotechnical Engineering 18:699–705, DOI: https://doi.org/10.1088/1742-6596/495/1/012014
2. Alsharari B, Olenko A, Abuel-Naga H (2020) Modeling of electrical resistivity of soil based on geotechnical properties. Expert Systems with Applications 141:112966, DOI: https://doi.org/10.1016/j.eswa.2019.112966
3. Arumugam K, Naved M, Shinde P, Leiva-Chauca O, Huaman-Osorio A, Gonzales-Yanac T (2023) Multiple disease prediction using Machine learning algorithms. Materials Today: Proceedings 80:3682–3685, DOI: https://doi.org/10.1016/j.matpr.2021.07.361
4. Bai XD, Cheng WC, Ong DE, Li G (2021) Evaluation of geological conditions and clogging of tunneling using machine learning. Geomechanics and Engineering 25(1):59–73, DOI: https://doi.org/10.12989/gae.2021.25.1.059
5. Banton O, Cimon M, Seguin M (1997) Mapping field-scale physical properties of soil with electrical resistivity. Soil Science Society of America Journal 61(4):1010–1017, DOI: https://doi.org/10.2136/sssaj1997.03615995006100040003x
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3