Skip to main content

Advertisement

Log in

Recent Progression in Controlled Drug Delivery Through Advanced Functional Nanomaterials in Cancer Therapy

  • Review
  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Cancer is increasingly the deadliest disease in the world. The number of deaths caused by this devastating illness is progressively rising. The therapy results are very disappointing despite the various advanced technologies in both developed and developing countries. Among the different types of advanced technologies, targeted drug delivery is one of the most widely used technologies in cancer therapy. However, there are a plethora of obstacles that have been identified to target drug delivery to cancer cells. In the current scenario, most of the anti-cancer drugs have poor water solubility, biocompatibility, and less target specificity. Not only that, but several adverse reactions, including nausea, vomiting, diarrhea, constipation, and hypersensitivity, have also been researched, because anti-cancer medications typically manifest their effects on normal cells alongside healthy cells. Current research focusses on innovative and smart drug delivery approaches by utilizing nanomaterials in drug formulation to overcome these limitations. In terms of solubility, circulation time, bioavailability, and dissolution rate, drug delivery based on nanomaterials is superior to drug administration than conventional methods. Inorganic and organic nanoparticles (NPs) have been successfully employed for drug delivery to the present day. Micellar NPs, liposomal NPs, lipid NPs, and protein-based NPs are examples of organic NPs, whereas inorganic NPs are made of materials like gold, silver, iron oxide, and titanium. Also, it was reported that DOX-loaded gold (Au) NPs conjugated with the cell-penetrating peptide BP100 (BP100@AuNPs-DOX) were a more effective drug delivery method for treating cancer cells than RGD-conjugated AuNPs-DOX (RGD@AuNPs-DOX). Several organic NP-based formulations, similar to liposomal-based anti-cancer drugs, are being reported to treat breast cancer such as myocyte (liposome combined with DOX). Thus, this review has highlighted current therapeutic formulations based on nanomaterials and their impact on various cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

References   

  1. Nigam, M., Mishra, A. P., Deb, V. K., Dimri, D. B., Tiwari, V., Bungau, S. G., & Radu, A.-F. (2023). Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomedicine & Pharmacotherapy, 164, 115015. https://doi.org/10.1016/j.biopha.2023.115015

    Article  CAS  Google Scholar 

  2. Mahfuz, A. M. U. B., Hossain, M. K., Khan, M. I., Hossain, I., & Anik, M. I. (2023). Smart drug delivery nanostructured systems for cancer therapy. In New Trends in Smart Nanostructured Biomaterials in Health Sciences (pp. 3–39). Elsevier. https://doi.org/10.1016/B978-0-323-85671-3.00001-4

  3. Nurgali, K., Jagoe, R. T., & Abalo, R. (2018). Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00245

  4. Jiménez-López, J., Bravo-Caparrós, I., Cabeza, L., Nieto, F. R., Ortiz, R., Perazzoli, G., & Prados, J. (2021). Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes. Biomedicine & Pharmacotherapy, 133, 111059. https://doi.org/10.1016/j.biopha.2020.111059

    Article  CAS  Google Scholar 

  5. Alhajamee, M., Marai, K., Al Abbas, S. M. N., & Homayouni Tabrizi, M. (2022). Co-encapsulation of curcumin and tamoxifen in lipid-chitosan hybrid nanoparticles for cancer therapy. Materials Technology, 37(9), 1183–1194. https://doi.org/10.1080/10667857.2021.1926811

    Article  ADS  CAS  Google Scholar 

  6. SreeHarsha, N., Maheshwari, R., Al-Dhubiab, B. E., Tekade, M., Sharma, M. C., Venugopala, K. N., … Alzahrani, A. M. (2019). Graphene-based hybrid nanoparticle of doxorubicin for cancer chemotherapy. International Journal of Nanomedicine, Volume 14, 7419–7429. https://doi.org/10.2147/IJN.S211224

  7. Singh, V., & Kesharwani, P. (2021). Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. Journal of Biomaterials Science, Polymer Edition, 32(14), 1882–1909. https://doi.org/10.1080/09205063.2021.1938859

    Article  CAS  PubMed  Google Scholar 

  8. Hossen, S., Hossain, M. K., Basher, M. K., Mia, M. N. H., Rahman, M. T., & Uddin, M. J. (2019). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research, 15, 1–18. https://doi.org/10.1016/j.jare.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  9. Jain, U., & Chauhan, N. (2019). Drug encapsulation and nanocarriers for targeted delivery in animals. In Nanoscience for Sustainable Agriculture (pp. 397–436). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-319-97852-9_18

  10. Chauhan, N., Saxena, K., & Jain, U. (2022). Hydrogel based materials: A progressive approach towards advancement in biomedical applications. Materials Today Communications, 33, 104369. https://doi.org/10.1016/j.mtcomm.2022.104369

    Article  CAS  Google Scholar 

  11. Lombardo, D., Kiselev, M. A., & Caccamo, M. T. (2019). Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials, 2019, 1–26. https://doi.org/10.1155/2019/3702518

    Article  CAS  Google Scholar 

  12. Roy, A., & Patra, C. R. (2023). Inorganic nanosystems for cancer theranostics. In Inorganic Nanosystems (pp. 509–547). Elsevier. https://doi.org/10.1016/B978-0-323-85784-0.00012-1

  13. Devi, N., Singh, P., Sharma, R., Kumar, M., Pandey, S. K., Sharma, R. K., & Wangoo, N. (2022). A lysine-rich cell penetrating peptide engineered multifunctional gold nanoparticle-based drug delivery system with enhanced cellular penetration and stability. Journal of Materials Science, 57(35), 16842–16857. https://doi.org/10.1007/s10853-022-07681-z

    Article  ADS  CAS  Google Scholar 

  14. Kadkhoda, J., Aghanejad, A., Safari, B., Barar, J., Rasta, S. H., & Davaran, S. (2022). Aptamer-conjugated gold nanoparticles for targeted paclitaxel delivery and photothermal therapy in breast cancer. Journal of Drug Delivery Science and Technology, 67, 102954. https://doi.org/10.1016/j.jddst.2021.102954

    Article  CAS  Google Scholar 

  15. Gulla, S., Lomada, D., Araveti, P. B., Srivastava, A., Murikinati, M. K., Reddy, K. R., … Altalhi, T. (2021). Titanium dioxide nanotubes conjugated with quercetin function as an effective anticancer agent by inducing apoptosis in melanoma cells. Journal of Nanostructure in Chemistry, 11(4): 721–734. https://doi.org/10.1007/s40097-021-00396-8

  16. Chauhan, N., Saxena, K., & Jain, U. (2022). Smart nanomaterials employed recently for drug delivery in cancer therapy: An intelligent approach. BioNanoScience, 12(4), 1356–1365. https://doi.org/10.1007/s12668-022-01022-9

    Article  Google Scholar 

  17. Prabhakar, U., Maeda, H., Jain, R. K., Sevick-Muraca, E. M., Zamboni, W., Farokhzad, O. C., … Blakey, D. C. (2013). Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Research, 73(8): 2412–2417. https://doi.org/10.1158/0008-5472.CAN-12-4561

  18. Duncan, R., Sat-Klopsch, Y.-N., Burger, A. M., Bibby, M. C., Fiebig, H. H., & Sausville, E. A. (2013). Validation of tumour models for use in anticancer nanomedicine evaluation: The EPR effect and cathepsin B-mediated drug release rate. Cancer Chemotherapy and Pharmacology, 72(2), 417–427. https://doi.org/10.1007/s00280-013-2209-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boca, S. C., Potara, M., Gabudean, A.-M., Juhem, A., Baldeck, P. L., & Astilean, S. (2011). Chitosan-coated triangular silver nanoparticles as a novel class of biocompatible, highly effective photothermal transducers for in vitro cancer cell therapy. Cancer Letters, 311(2), 131–140. https://doi.org/10.1016/j.canlet.2011.06.022

    Article  CAS  PubMed  Google Scholar 

  20. Di Corato, R., Palumberi, D., Marotta, R., Scotto, M., Carregal-Romero, S., Rivera_Gil, P., & Pellegrino, T. (2012). Magnetic nanobeads decorated with silver nanoparticles as cytotoxic agents and photothermal probes. Small (Weinheim an der Bergstrasse, Germany), 8(17), 2731–2742. https://doi.org/10.1002/smll.201200230

    Article  CAS  PubMed  Google Scholar 

  21. Jain, P. K., Huang, X., El-Sayed, I. H., & El-Sayed, M. A. (2008). Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of Chemical Research, 41(12), 1578–1586. https://doi.org/10.1021/ar7002804

    Article  CAS  PubMed  Google Scholar 

  22. Ding, J., Chen, G., Chen, G., & Guo, M. (2019). One-pot synthesis of epirubicin-capped silver nanoparticles and their anticancer activity against Hep G2 cells. Pharmaceutics, 11(3), 123. https://doi.org/10.3390/pharmaceutics11030123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akter, M., Sikder, Md. T., Rahman, Md. M., Ullah, A. K. M. A., Hossain, K. F. B., Banik, S., … Kurasaki, M. (2018). A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. Journal of Advanced Research, 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008

  24. Nogueira, D. R., Tavano, L., Mitjans, M., Pérez, L., Infante, M. R., & Vinardell, M. P. (2013). In vitro antitumor activity of methotrexate via pH-sensitive chitosan nanoparticles. Biomaterials, 34(11), 2758–2772. https://doi.org/10.1016/j.biomaterials.2013.01.005

    Article  CAS  PubMed  Google Scholar 

  25. Karuppaiah, A., Babu, D., Selvaraj, D., Natrajan, T., Rajan, R., Gautam, M., … Sankar, V. (2021). Building and behavior of a pH-stimuli responsive chitosan nanoparticles loaded with folic acid conjugated gemcitabine silver colloids in MDA-MB-453 metastatic breast cancer cell line and pharmacokinetics in rats. European Journal of Pharmaceutical Sciences, 165: 105938. https://doi.org/10.1016/j.ejps.2021.105938

  26. Pandey, A., Sauraj, A. A., & Negi, Y. (2021). Synthesis of polygonal chitosan microcapsules for the delivery of amygdalin loaded silver nanoparticles in breast cancer therapy. Materials Today: Proceedings, 43, 3744–3748. https://doi.org/10.1016/j.matpr.2020.10.988

    Article  CAS  Google Scholar 

  27. Xue, Y., Zhang, S., Huang, Y., Zhang, T., Liu, X., Hu, Y., … Tang, M. (2012). Acute toxic effects and gender‐related biokinetics of silver nanoparticles following an intravenous injection in mice. Journal of Applied Toxicology, 32(11): 890–899. https://doi.org/10.1002/jat.2742

  28. Abd El-Maksoud, E. M., Lebda, M. A., Hashem, A. E., Taha, N. M., & Kamel, M. A. (2019). Ginkgo biloba mitigates silver nanoparticles-induced hepatotoxicity in Wistar rats via improvement of mitochondrial biogenesis and antioxidant status. Environmental Science and Pollution Research, 26(25), 25844–25854. https://doi.org/10.1007/s11356-019-05835-2

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, X.-F., Shen, W., & Gurunathan, S. (2016). Silver nanoparticle-mediated cellular responses in various cell lines: An in vitro model. International Journal of Molecular Sciences, 17(10), 1603. https://doi.org/10.3390/ijms17101603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mandal, A. K. (2022). Silver nanoparticles as drug delivery system in combating infections and cancer. In Challenges and Advances in Pharmaceutical Research Vol. 4 (pp. 165–179). Book Publisher International (a part of SCIENCEDOMAIN International). https://doi.org/10.9734/bpi/capr/v4/16408D

  31. Hanna, D. H., El-Mazaly, M. H., & Mohamed, R. R. (2023). Synthesis of biodegradable antimicrobial pH-sensitive silver nanocomposites reliant on chitosan and carrageenan derivatives for 5-fluorouracil drug delivery toward HCT116 cancer cells. International Journal of Biological Macromolecules, 231, 123364. https://doi.org/10.1016/j.ijbiomac.2023.123364

    Article  CAS  PubMed  Google Scholar 

  32. Hussein, H. A., & Abdullah, M. A. (2022). Novel drug delivery systems based on silver nanoparticles, hyaluronic acid, lipid nanoparticles and liposomes for cancer treatment. Applied Nanoscience, 12(11), 3071–3096. https://doi.org/10.1007/s13204-021-02018-9

    Article  ADS  CAS  Google Scholar 

  33. Habeeb Rahuman, H. B., Dhandapani, R., Narayanan, S., Palanivel, V., Paramasivam, R., Subbarayalu, R., … Muthupandian, S. (2022). Medicinal plants mediated the green synthesis of silver nanoparticles and their biomedical applications. IET Nanobiotechnology, 16(4), 115–144. https://doi.org/10.1049/nbt2.12078

  34. Haque, S., Norbert, C. C., Acharyya, R., Mukherjee, S., Kathirvel, M., & Patra, C. R. (2021). Biosynthesized silver nanoparticles for cancer therapy and in vivo bioimaging. Cancers, 13(23), 6114. https://doi.org/10.3390/cancers13236114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, X., Cai, X., Hu, J., Shao, N., Wang, F., Zhang, Q., … Cheng, Y. (2013). Glutathione-triggered “off–on” release of anticancer drugs from dendrimer-encapsulated gold nanoparticles. Journal of the American Chemical Society, 135(26), 9805–9810. https://doi.org/10.1021/ja402903h

  36. Bhattarai, SR., Kc RB., Aryal, S., Bhattarai, N., Kim, S. Y., Yi, H. K., … Kim, H. Y. (2008). Hydrophobically modified chitosan/gold nanoparticles for DNA delivery. Journal of Nanoparticle Research, 10(1), 151–162. https://doi.org/10.1007/s11051-007-9233-7

  37. Bhumkar, D. R., Joshi, H. M., Sastry, M., & Pokharkar, V. B. (2007). Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharmaceutical Research, 24(8), 1415–1426. https://doi.org/10.1007/s11095-007-9257-9

    Article  CAS  PubMed  Google Scholar 

  38. Oh, E., Delehanty, J. B., Sapsford, K. E., Susumu, K., Goswami, R., Blanco-Canosa, J. B., … Medintz, I. L. (2011). Cellular uptake and fate of PEGylated gold nanoparticles is dependent on both cell-penetration peptides and particle size. ACS Nano, 5(8), 6434–6448. https://doi.org/10.1021/nn201624c

  39. Lee, C.-S., Kim, H., Yu, J., Yu, S. H., Ban, S., Oh, S., … Kim, T. H. (2017). Doxorubicin-loaded oligonucleotide conjugated gold nanoparticles: A promising in vivo drug delivery system for colorectal cancer therapy. European Journal of Medicinal Chemistry, 142, 416–423. https://doi.org/10.1016/j.ejmech.2017.08.063

  40. Rajendran, I., Ponrasu, T., Rajaram, R., & Suguna, L. (2021). The apoptotic effect of Ferulic acid-synthesized gold nanoparticles against human epidermoid carcinoma (A431) cells via activation of caspase-3 pathway. Journal of Drug Delivery Science and Technology, 63, 102478. https://doi.org/10.1016/j.jddst.2021.102478

    Article  CAS  Google Scholar 

  41. Fu, Z., & Xiang, J. (2020). Aptamer-functionalized nanoparticles in targeted delivery and cancer therapy. International Journal of Molecular Sciences, 21(23), 9123. https://doi.org/10.3390/ijms21239123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Go, G., Lee, C.-S., Yoon, Y. M., Lim, J. H., Kim, T. H., & Lee, S. H. (2021). PrPC aptamer conjugated–gold nanoparticles for targeted delivery of doxorubicin to colorectal cancer cells. International Journal of Molecular Sciences, 22(4), 1976. https://doi.org/10.3390/ijms22041976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ajnai, G., Cheng, C.-C., Kan, T.-C., Lu, J.-W., Rahayu, S., Chiu, A., & Chang, J. (2022). Improving tirapazamine (TPZ) to target and eradicate hypoxia tumors by gold nanoparticle carriers. Pharmaceutics, 14(4), 847. https://doi.org/10.3390/pharmaceutics14040847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aljohani, F. S., Hamed, M. T., Bakr, B. A., Shahin, Y. H., Abu-Serie, M. M., Awaad, A. K., … Elwakil, B. H. (2022). In vivo bio-distribution and acute toxicity evaluation of greenly synthesized ultra-small gold nanoparticles with different biological activities. Scientific Reports, 12(1), 6269. https://doi.org/10.1038/s41598-022-10251-7

  45. Cassano, D., Summa, M., Pocoví‐Martínez, S., Mapanao, A., Catelani, T., Bertorelli, R., & Voliani, V. (2019). Biodegradable ultrasmall‐in‐nano gold architectures: Mid‐period in vivo distribution and excretion assessment. Particle & Particle Systems Characterization, 36(2). https://doi.org/10.1002/ppsc.201800464

  46. Cai, F., Li, S., Huang, H., Iqbal, J., Wang, C., & Jiang, X. (2022). Green synthesis of gold nanoparticles for immune response regulation: Mechanisms, applications, and perspectives. Journal of Biomedical Materials Research Part A, 110(2), 424–442. https://doi.org/10.1002/jbm.a.37281

    Article  CAS  PubMed  Google Scholar 

  47. Niikura, K., Matsunaga, T., Suzuki, T., Kobayashi, S., Yamaguchi, H., Orba, Y., … Sawa, H. (2013). Gold nanoparticles as a vaccine platform: Influence of size and shape on immunological responses in vitro and in vivo. ACS Nano, 7(5), 3926–3938. https://doi.org/10.1021/nn3057005

  48. Sengupta, A., Azharuddin, M., Al-Otaibi, N., & Hinkula, J. (2022). Efficacy and immune response elicited by gold nanoparticle-based nanovaccines against infectious diseases. Vaccines, 10(4), 505. https://doi.org/10.3390/vaccines10040505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dubaj, T., Kozics, K., Sramkova, M., Manova, A., Bastús, N. G., Moriones, O. H., … Simon, P. (2022). Pharmacokinetics of PEGylated gold nanoparticles: In vitro—in vivo correlation. Nanomaterials, 12(3), 511. https://doi.org/10.3390/nano12030511

  50. Balfourier, A., Luciani, N., Wang, G., Lelong, G., Ersen, O., Khelfa, A., … Carn, F. (2020). Unexpected intracellular biodegradation and recrystallization of gold nanoparticles. Proceedings of the National Academy of Sciences, 117(1), 103–113. https://doi.org/10.1073/pnas.1911734116

  51. Yu, M., Xu, J., & Zheng, J. (2019). Renal clearable luminescent gold nanoparticles: From the bench to the clinic. Angewandte Chemie International Edition, 58(13), 4112–4128. https://doi.org/10.1002/anie.201807847

    Article  CAS  PubMed  Google Scholar 

  52. Bhattacharya, T., Das, D., Borges e Soares, G. A., Chakrabarti, P., Ai, Z., Chopra, H., … Cavalu, S. (2022). Novel green approaches for the preparation of gold nanoparticles and their promising potential in oncology. Processes, 10(2), 426.https://doi.org/10.3390/pr10020426

  53. Sargazi, S., Laraib, U., Er, S., Rahdar, A., Hassanisaadi, M., Zafar, M. N., … Bilal, M. (2022). Application of green gold nanoparticles in cancer therapy and diagnosis. Nanomaterials, 12(7), 1102. https://doi.org/10.3390/nano12071102

  54. Ziental, D., Czarczynska-Goslinska, B., Mlynarczyk, D. T., Glowacka-Sobotta, A., Stanisz, B., Goslinski, T., & Sobotta, L. (2020). Titanium dioxide nanoparticles: Prospects and applications in medicine. Nanomaterials, 10(2), 387. https://doi.org/10.3390/nano10020387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Devanand Venkatasubbu, G., Ramasamy, S., Ramakrishnan, V., & Kumar, J. (2013). Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery. Advanced Powder Technology, 24(6), 947–954. https://doi.org/10.1016/j.apt.2013.01.008

    Article  CAS  Google Scholar 

  56. Abdel-Ghany, S., Raslan, S., Tombuloglu, H., Shamseddin, A., Cevik, E., Said, O. A., … Sabit, H. (2020). Vorinostat-loaded titanium oxide nanoparticles (anatase) induce G2/M cell cycle arrest in breast cancer cells via PALB2 upregulation. 3 Biotech, 10(9), 407. https://doi.org/10.1007/s13205-020-02391-2

  57. Song, J.-L., Huang, Z.-Q., Mao, J., Chen, W.-J., Wang, B., Yang, F.-W., … Chen, J.-H. (2020). A facile synthesis of uniform hollow MIL-125 titanium-based nanoplatform for endosomal esacpe and intracellular drug delivery. Chemical Engineering Journal, 396, 125246. https://doi.org/10.1016/j.cej.2020.125246

  58. Liang, X., Xie, Y., Wu, J., Wang, J., Petković, M., Stepić, M., … Mi, L. (2021). Functional titanium dioxide nanoparticle conjugated with phthalocyanine and folic acid as a promising photosensitizer for targeted photodynamic therapy in vitro and in vivo. Journal of Photochemistry and Photobiology B: Biology, 215, 112122. https://doi.org/10.1016/j.jphotobiol.2020.112122

  59. Re-evaluation of titanium dioxide (E 171) as a food additive. (2016). EFSA Journal, 14(9), e04545. https://doi.org/10.2903/j.efsa.2016.4545

  60. WANG, J., ZHOU, G., CHEN, C., YU, H., WANG, T., MA, Y., … SUN, J. (2007). Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 168(2), 176–185. https://doi.org/10.1016/j.toxlet.2006.12.001

  61. Racovita, A. D. (2022). Titanium dioxide: Structure, impact, and toxicity. International Journal of Environmental Research and Public Health, 19(9), 5681. https://doi.org/10.3390/ijerph19095681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Di Giampaolo, L., Zaccariello, G., Benedetti, A., Vecchiotti, G., Caposano, F., Sabbioni, E., … Petrarca, C. (2021). Genotoxicity and immunotoxicity of titanium dioxide-embedded mesoporous silica nanoparticles (TiO2@MSN) in primary peripheral human blood mononuclear cells (PBMC). Nanomaterials, 11(2), 270. https://doi.org/10.3390/nano11020270

  63. Dhupal, M., Oh, J.-M., Tripathy, D. R., Kim, S.-K., Koh, S. B., & Park, K.-S. (2018). Immunotoxicity of titanium dioxide nanoparticles via simultaneous induction of apoptosis and multiple toll-like receptors signaling through ROS-dependent SAPK/JNK and p38 MAPK activation. International Journal of Nanomedicine, 13, 6735–6750. https://doi.org/10.2147/IJN.S176087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hong, F., Zhou, Y., Zhou, Y., & Wang, L. (2017). Immunotoxic effects of thymus in mice following exposure to nanoparticulate TiO2. Environmental Toxicology, 32(10), 2234–2243. https://doi.org/10.1002/tox.22439

    Article  ADS  CAS  PubMed  Google Scholar 

  65. Sang, X., Fei, M., Sheng, L., Zhao, X., Yu, X., Hong, J., … Hong, F. (2014). Immunomodulatory effects in the spleen‐injured mice following exposure to titanium dioxide nanoparticles. Journal of Biomedical Materials Research Part A, 102(10), 3562–3572. https://doi.org/10.1002/jbm.a.35034

  66. Pandey, A., & Mishra, A. K. (2022). Immunomodulation, toxicity, and therapeutic potential of nanoparticles. Biotech, 11(3), 42. https://doi.org/10.3390/biotech11030042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xie, G., Wang, C., Sun, J., & Zhong, G. (2011). Tissue distribution and excretion of intravenously administered titanium dioxide nanoparticles. Toxicology Letters, 205(1), 55–61. https://doi.org/10.1016/j.toxlet.2011.04.034

    Article  CAS  PubMed  Google Scholar 

  68. Remya, R. R., Julius, A., Suman, T. Y., Mohanavel, V., Karthick, A., Pazhanimuthu, C., … Muhibbullah, M. (2022). Role of nanoparticles in biodegradation and their importance in environmental and biomedical applications. Journal of Nanomaterials, 2022, 1–15. https://doi.org/10.1155/2022/6090846

  69. Mansoor, A., Khurshid, Z., Khan, M. T., Mansoor, E., Butt, F. A., Jamal, A., & Palma, P. J. (2022). Medical and dental applications of titania nanoparticles: An overview. Nanomaterials, 12(20), 3670. https://doi.org/10.3390/nano12203670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sagadevan, S., Imteyaz, S., Murugan, B., Anita Lett, J., Sridewi, N., Weldegebrieal, G. K., … Oh, W.-C. (2022). A comprehensive review on green synthesis of titanium dioxide nanoparticles and their diverse biomedical applications. Green Processing and Synthesis, 11(1), 44–63. https://doi.org/10.1515/gps-2022-0005

  71. Rajakumar, G., Rahuman, A. A., Roopan, S. M., Khanna, V. G., Elango, G., Kamaraj, C., … Velayutham, K. (2012). Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 91, 23–29. https://doi.org/10.1016/j.saa.2012.01.011

  72. Jha, A. K., Prasad, K., & Kulkarni, A. R. (2009). Synthesis of TiO2 nanoparticles using microorganisms. Colloids and Surfaces B: Biointerfaces, 71(2), 226–229. https://doi.org/10.1016/j.colsurfb.2009.02.007

    Article  CAS  PubMed  Google Scholar 

  73. Singh, Th. A., Das, J., & Sil, P. C. (2020). Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Advances in Colloid and Interface Science, 286, 102317. https://doi.org/10.1016/j.cis.2020.102317

    Article  CAS  PubMed  Google Scholar 

  74. Atanackovic, D., Hildebrandt, Y., Templin, J., Cao, Y., Keller, C., Panse, J., … Kroger, N. (2012). Role of interleukin 16 in multiple myeloma. JNCI Journal of the National Cancer Institute, 104(13), 1005–1020. https://doi.org/10.1093/jnci/djs257

  75. Sayed, H. M., Said, M. M., Morcos, N. Y. S., El Gawish, M. A., & Ismail, A. F. M. (2021). Antitumor and radiosensitizing effects of zinc oxide-caffeic acid nanoparticles against solid ehrlich carcinoma in female mice. Integrative Cancer Therapies, 20, 153473542110219. https://doi.org/10.1177/15347354211021920

    Article  CAS  Google Scholar 

  76. Yousef, M. I., Mutar, T. F., & Kamel, M.A.E.-N. (2019). Hepato-renal toxicity of oral sub-chronic exposure to aluminum oxide and/or zinc oxide nanoparticles in rats. Toxicology Reports, 6, 336–346. https://doi.org/10.1016/j.toxrep.2019.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, Z.-Y., Yang, Y.-C., Wang, B.-J., Cheng, F.-Y., Lee, Y.-L., Lee, Y.-H., & Wang, Y.-J. (2022). Comparing different surface modifications of zinc oxide nanoparticles in the developmental toxicity of zebrafish embryos and larvae. Ecotoxicology and Environmental Safety, 243, 113967. https://doi.org/10.1016/j.ecoenv.2022.113967

    Article  CAS  PubMed  Google Scholar 

  78. Sherif, A. H., Abdelsalam, M., Ali, N. G., & Mahrous, K. F. (2023). Zinc oxide nanoparticles boost the immune responses in Oreochromis niloticus and improve disease resistance to Aeromonas hydrophila infection. Biological Trace Element Research, 201(2), 927–936. https://doi.org/10.1007/s12011-022-03183-w

    Article  CAS  PubMed  Google Scholar 

  79. Kielbik, P., Kaszewski, J., Rosowska, J., Wolska, E., Witkowski, B. S., Gralak, M. A., … Godlewski, M. M. (2017). Biodegradation of the ZnO:Eu nanoparticles in the tissues of adult mouse after alimentary application. Nanomedicine: Nanotechnology, Biology and Medicine, 13(3), 843–852. https://doi.org/10.1016/j.nano.2016.11.002

  80. Czyżowska, A., & Barbasz, A. (2022). A review: Zinc oxide nanoparticles – Friends or enemies? International Journal of Environmental Health Research, 32(4), 885–901. https://doi.org/10.1080/09603123.2020.1805415

    Article  CAS  PubMed  Google Scholar 

  81. Barhoum, A., Melcher, J., Van Assche, G., Rahier, H., Bechelany, M., Fleisch, M., & Bahnemann, D. (2017). Synthesis, growth mechanism, and photocatalytic activity of zinc oxide nanostructures: Porous microparticles versus nonporous nanoparticles. Journal of Materials Science, 52(5), 2746–2762. https://doi.org/10.1007/s10853-016-0567-3

    Article  ADS  CAS  Google Scholar 

  82. Raha, S., & Ahmaruzzaman, Md. (2022). ZnO nanostructured materials and their potential applications: Progress, challenges and perspectives. Nanoscale Advances, 4(8), 1868–1925. https://doi.org/10.1039/D1NA00880C

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Raja, K., Ramesh, P. S., & Geetha, D. (2014). Synthesis, structural and optical properties of ZnO and Ni-doped ZnO hexagonal nanorods by Co-precipitation method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 120, 19–24. https://doi.org/10.1016/j.saa.2013.09.103

    Article  CAS  PubMed  Google Scholar 

  84. Medina Cruz, D., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., … Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: A review. Journal of Physics: Materials, 3(3), 034005. https://doi.org/10.1088/2515-7639/ab8186

  85. El Shafey, A. M. (2020). Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis, 9(1), 304–339. https://doi.org/10.1515/gps-2020-0031

    Article  Google Scholar 

  86. Wu, W., He, Q., & Jiang, C. (2008). Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Research Letters, 3(11), 397. https://doi.org/10.1007/s11671-008-9174-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. York, W. S., van Halbeek, H., Darvill, A. G., & Albersheim, P. (1990). Structural analysis of xyloglucan oligosaccharides by 1H-n.m.r. spectroscopy and fast-atom-bombardment mass spectrometry. Carbohydrate Research, 200, 9–31. https://doi.org/10.1016/0008-6215(90)84179-X

    Article  CAS  PubMed  Google Scholar 

  88. Unnikrishnan, B. S., Sen, A., Preethi, G. U., Joseph, M. M., Maya, S., Shiji, R., … Sreelekha, T. T. (2021). Folic acid-appended galactoxyloglucan-capped iron oxide nanoparticles as a biocompatible nanotheranostic agent for tumor-targeted delivery of doxorubicin. International Journal of Biological Macromolecules, 168, 130–142. https://doi.org/10.1016/j.ijbiomac.2020.11.205

  89. Raviraj, V., Pham, B. T. T., Kim, B. J., Pham, N. T. H., Kok, L. F., Painter, N., … Lyons, J. G. (2021). Non-invasive transdermal delivery of chemotherapeutic molecules in vivo using superparamagnetic iron oxide nanoparticles. Cancer Nanotechnology, 12(1), 6. https://doi.org/10.1186/s12645-021-00079-7

  90. Ngema, L. M., Adeyemi, S. A., Marimuthu, T., Ubanako, P., Wamwangi, D., & Choonara, Y. E. (2022). Synthesis of novel conjugated linoleic acid (CLA)-coated superparamagnetic iron oxide nanoparticles (SPIONs) for the delivery of paclitaxel with enhanced in vitro anti-proliferative activity on A549 lung cancer cells. Pharmaceutics, 14(4), 829. https://doi.org/10.3390/pharmaceutics14040829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu, L., Wen, W., Wang, X., Huang, D., Cao, J., Qi, X., & Shen, S. (2022). Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs. Particle and Fibre Toxicology, 19(1), 24. https://doi.org/10.1186/s12989-022-00465-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ying, H., Ruan, Y., Zeng, Z., Bai, Y., Xu, J., & Chen, S. (2022). Iron oxide nanoparticles size-dependently activate mouse primary macrophages via oxidative stress and endoplasmic reticulum stress. International Immunopharmacology, 105, 108533. https://doi.org/10.1016/j.intimp.2022.108533

    Article  CAS  PubMed  Google Scholar 

  93. Nowak-Jary, J., & Machnicka, B. (2022). Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. Journal of Nanobiotechnology, 20(1), 305. https://doi.org/10.1186/s12951-022-01510-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zheng, W., Liu, C., Jin, J., Sun, W., Zhao, J., Zhao, M., … Cheng, X. (2022). Biodegradable iron oxide nanoparticles for intraoperative parathyroid gland imaging in thyroidectomy. PNAS Nexus, 1(3). https://doi.org/10.1093/pnasnexus/pgac087

  95. Attia, N. F., El-Monaem, E. M. A., El-Aqapa, H. G., Elashery, S. E. A., Eltaweil, A. S., El Kady, M., … El-Seedi, H. R. (2022). Iron oxide nanoparticles and their pharmaceutical applications. Applied Surface Science Advances, 11, 100284. https://doi.org/10.1016/j.apsadv.2022.100284

  96. Bustamante-Torres, M., Romero-Fierro, D., Estrella-Nuñez, J., Arcentales-Vera, B., Chichande-Proaño, E., & Bucio, E. (2022). Polymeric composite of magnetite iron oxide nanoparticles and their application in biomedicine: A review. Polymers, 14(4), 752. https://doi.org/10.3390/polym14040752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Rozalen, M., Sánchez-Polo, M., Fernández-Perales, M., Widmann, T. J., & Rivera-Utrilla, J. (2020). Synthesis of controlled-size silver nanoparticles for the administration of methotrexate drug and its activity in colon and lung cancer cells. RSC Advances, 10(18), 10646–10660. https://doi.org/10.1039/C9RA08657A

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mukherjee, S., Kotcherlakota, R., Haque, S., Bhattacharya, D., Kumar, J. M., Chakravarty, S., & Patra, C. R. (2020). Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. Materials Science and Engineering: C, 108, 110375. https://doi.org/10.1016/j.msec.2019.110375

    Article  CAS  PubMed  Google Scholar 

  99. Ozgenc, E., Karpuz, M., Arzuk, E., Gonzalez-Alvarez, M., Sanz, M. B., Gundogdu, E., & Gonzalez-Alvarez, I. (2022). Radiolabeled trastuzumab solid lipid nanoparticles for breast cancer cell: In vitro and in vivo studies. ACS Omega, 7(34), 30015–30027. https://doi.org/10.1021/acsomega.2c03023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hwang, S. J., Park, H.-G., Park, Y., & Lee, H.-J. (2016). An β-quaternary chiral latam derivative, YH-304 as a novel broad-spectrum anticancer agent. International Journal of Oncology, 49(6), 2480–2486. https://doi.org/10.3892/ijo.2016.3726

    Article  CAS  PubMed  Google Scholar 

  101. Pi, C., Zhao, W., Zeng, M., Yuan, J., Shen, H., Li, K., … Zhao, L. (2022). Anti-lung cancer effect of paclitaxel solid lipid nanoparticles delivery system with curcumin as co-loading partner in vitro and in vivo. Drug Delivery, 29(1), 1878–1891. https://doi.org/10.1080/10717544.2022.2086938

  102. Li, F., Xie, C., Cheng, Z., & Xia, H. (2016). Ultrasound responsive block copolymer micelle of poly(ethylene glycol)–poly(propylene glycol) obtained through click reaction. Ultrasonics Sonochemistry, 30, 9–17. https://doi.org/10.1016/j.ultsonch.2015.11.023

    Article  CAS  PubMed  Google Scholar 

  103. Campos, J. R., Severino, P., Santini, A., Silva, A. M., Shegokar, R., Souto, S. B., & Souto, E. B. (2020). Solid lipid nanoparticles (SLN). In Nanopharmaceuticals (pp. 1–15). Elsevier. https://doi.org/10.1016/B978-0-12-817778-5.00001-4

  104. Li, S., Yang, Y., Lin, X., Li, Z., Ma, G., Su, Z., & Zhang, S. (2020). Biocompatible cationic solid lipid nanoparticles as adjuvants effectively improve humoral and T cell immune response of foot and mouth disease vaccines. Vaccine, 38(11), 2478–2486. https://doi.org/10.1016/j.vaccine.2020.02.004

    Article  CAS  PubMed  Google Scholar 

  105. Souto, E. B., & Doktorovová, S. (2009). Solid lipid nanoparticle formulations: Pharmacokinetic and biopharmaceutical aspects in drug delivery (pp. 105–129). https://doi.org/10.1016/S0076-6879(09)64006-4

  106. Müller, R. H., Rühl, D., & Runge, S. A. (1996). Biodegradation of solid lipid nanoparticles as a function of lipase incubation time. International Journal of Pharmaceutics, 144(1), 115–121. https://doi.org/10.1016/S0378-5173(96)04731-X

    Article  Google Scholar 

  107. Wang, J., Li, S., Han, Y., Guan, J., Chung, S., Wang, C., & Li, D. (2018). Poly(ethylene glycol)–polylactide micelles for cancer therapy. Frontiers in Pharmacology, 9. https://doi.org/10.3389/fphar.2018.00202

  108. Torchilin, V. P., Lukyanov, A. N., Gao, Z., & Papahadjopoulos-Sternberg, B. (2003). Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proceedings of the National Academy of Sciences, 100(10), 6039–6044. https://doi.org/10.1073/pnas.0931428100

    Article  ADS  CAS  Google Scholar 

  109. Gelderblom, H., Verweij, J., Nooter, K., & Sparreboom, A. (2001). Cremophor EL. European Journal of Cancer, 37(13), 1590–1598. https://doi.org/10.1016/S0959-8049(01)00171-X

    Article  CAS  PubMed  Google Scholar 

  110. Oerlemans, C., Bult, W., Bos, M., Storm, G., Nijsen, J. F. W., & Hennink, W. E. (2010). Polymeric micelles in anticancer therapy: Targeting, imaging and triggered release. Pharmaceutical Research, 27(12), 2569–2589. https://doi.org/10.1007/s11095-010-0233-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wang, Q., Liu, F., Wang, L., Xie, C., Wu, P., Du, S., … Li, R. (2020). Enhanced and prolonged antitumor effect of salinomycin-loaded gelatinase-responsive nanoparticles via targeted drug delivery and inhibition of cervical cancer stem cells. International Journal of Nanomedicine, Volume 15, 1283–1295. https://doi.org/10.2147/IJN.S234679

  112. Pouyani, T., & Prestwich, G. D. (1994). Functionalized derivatives of hyaluronic acid oligosaccharides: Drug carriers and novel biomaterials. Bioconjugate Chemistry, 5(4), 339–347. https://doi.org/10.1021/bc00028a010

    Article  CAS  PubMed  Google Scholar 

  113. Li, F., Park, S.-J., Ling, D., Park, W., Han, J. Y., Na, K., & Char, K. (2013). Hyaluronic acid-conjugated graphene oxide/photosensitizer nanohybrids for cancer targeted photodynamic therapy. Journal of Materials Chemistry B, 1(12), 1678. https://doi.org/10.1039/c3tb00506b

    Article  CAS  PubMed  Google Scholar 

  114. Yang, X., Yu, T., Zeng, Y., Lian, K., Zhou, X., Ke, J., … Hu, F. (2020). pH-responsive biomimetic polymeric micelles as lymph node-targeting vaccines for enhanced antitumor immune responses. Biomacromolecules, 21(7), 2818–2828. https://doi.org/10.1021/acs.biomac.0c00518

  115. Montazeri Aliabadi, H., Brocks, D. R., & Lavasanifar, A. (2005). Polymeric micelles for the solubilization and delivery of cyclosporine A: Pharmacokinetics and biodistribution. Biomaterials, 26(35), 7251–7259. https://doi.org/10.1016/j.biomaterials.2005.05.042

    Article  CAS  Google Scholar 

  116. Nakayama, M., Okano, T., Miyazaki, T., Kohori, F., Sakai, K., & Yokoyama, M. (2006). Molecular design of biodegradable polymeric micelles for temperature-responsive drug release. Journal of Controlled Release, 115(1), 46–56. https://doi.org/10.1016/j.jconrel.2006.07.007

    Article  CAS  PubMed  Google Scholar 

  117. Croy, S., & Kwon, G. (2006). Polymeric micelles for drug delivery. Current Pharmaceutical Design, 12(36), 4669–4684. https://doi.org/10.2174/138161206779026245

    Article  CAS  PubMed  Google Scholar 

  118. Trivedi, R., & Kompella, U. B. (2010). Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine, 5(3), 485–505. https://doi.org/10.2217/nnm.10.10

    Article  CAS  PubMed  Google Scholar 

  119. Hwang, D., Ramsey, J. D., & Kabanov, A. V. (2020). Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Advanced Drug Delivery Reviews, 156, 80–118. https://doi.org/10.1016/j.addr.2020.09.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang, J., Zhu, R., Sun, X., Wang, T., Liu, H., & Wang, S.-L. (2014). Intracellular uptake of etoposide-loaded solid lipid nanoparticles induces an enhancing inhibitory effect on gastric cancer through mitochondria-mediated apoptosis pathway. International Journal of Nanomedicine, 3987. https://doi.org/10.2147/IJN.S64103

  121. Jinturkar, K. A., Anish, C., Kumar, M. K., Bagchi, T., Panda, A. K., & Misra, A. R. (2012). Liposomal formulations of etoposide and docetaxel for p53 mediated enhanced cytotoxicity in lung cancer cell lines. Biomaterials, 33(8), 2492–2507. https://doi.org/10.1016/j.biomaterials.2011.11.067

    Article  CAS  PubMed  Google Scholar 

  122. Cao, X., & Wang, B. (2021). Targeted PD-L1 PLGA/liposomes-mediated luteolin therapy for effective liver cancer cell treatment. Journal of Biomaterials Applications, 36(5), 843–850. https://doi.org/10.1177/08853282211017701

    Article  CAS  PubMed  Google Scholar 

  123. Mazloum-Ravasan, S., Mohammadi, M., Hiagh, E. M., Ebrahimi, A., Hong, J.-H., Hamishehkar, H., & Kim, K. H. (2022). Nano-liposomal zein hydrolysate for improved apoptotic activity and therapeutic index in lung cancer treatment. Drug Delivery, 29(1), 1049–1059. https://doi.org/10.1080/10717544.2022.2057618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Abbas, Z. S., Sulaiman, G. M., Jabir, M. S., Mohammed, S. A. A., Khan, R. A., Mohammed, H. A., & Al-Subaiyel, A. (2022). Galangin/β-cyclodextrin inclusion complex as a drug-delivery system for improved solubility and biocompatibility in breast cancer treatment. Molecules, 27(14), 4521. https://doi.org/10.3390/molecules27144521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yang, H., Sun, A., Yang, J., Cheng, H., Yang, X., Chen, H., … Falahati, M. (2021). Development of doxorubicin-loaded chitosan–heparin nanoparticles with selective anticancer efficacy against gastric cancer cells in vitro through regulation of intrinsic apoptosis pathway. Arabian Journal of Chemistry, 14(8), 103266. https://doi.org/10.1016/j.arabjc.2021.103266

  126. Yu, T., Li, Y., Gu, X., & Li, Q. (2020). Development of a hyaluronic acid-based nanocarrier incorporating doxorubicin and cisplatin as a pH-sensitive and CD44-targeted anti-breast cancer drug delivery system. Frontiers in Pharmacology, 11. https://doi.org/10.3389/fphar.2020.532457

  127. Adams, D. H., Joyce, G., Richardson, V. J., Ryman, B. E., & Wiśniewski, H. M. (1977). Liposome toxicity in the mouse central nervous system. Journal of the Neurological Sciences, 31(2), 173–179. https://doi.org/10.1016/0022-510X(77)90104-6

    Article  CAS  PubMed  Google Scholar 

  128. Hu, F., Yue, H., Lu, T., & Ma, G. (2020). Cytosolic delivery of HBsAg and enhanced cellular immunity by pH-responsive liposome. Journal of Controlled Release, 324, 460–470. https://doi.org/10.1016/j.jconrel.2020.05.042

    Article  CAS  PubMed  Google Scholar 

  129. Jagwani, S., Jalalpure, S., Dhamecha, D., Jadhav, K., & Bohara, R. (2020). Pharmacokinetic and pharmacodynamic evaluation of resveratrol loaded cationic liposomes for targeting hepatocellular carcinoma. ACS Biomaterials Science & Engineering, 6(9), 4969–4984. https://doi.org/10.1021/acsbiomaterials.0c00429

    Article  CAS  Google Scholar 

  130. Yaroslavov, A. A., Efimova, A. A., Krasnikov, E. A., Trosheva, K. S., Popov, A. S., Melik-Nubarov, N. S., & Krivtsov, G. G. (2021). Chitosan-based multi-liposomal complexes: Synthesis, biodegradability and cytotoxicity. International Journal of Biological Macromolecules, 177, 455–462. https://doi.org/10.1016/j.ijbiomac.2021.02.169

    Article  CAS  PubMed  Google Scholar 

  131. Filipczak, N., Pan, J., Yalamarty, S. S. K., & Torchilin, V. P. (2020). Recent advancements in liposome technology. Advanced Drug Delivery Reviews, 156, 4–22. https://doi.org/10.1016/j.addr.2020.06.022

    Article  CAS  PubMed  Google Scholar 

  132. Maja, L., Željko, K., & Mateja, P. (2020). Sustainable technologies for liposome preparation. The Journal of Supercritical Fluids, 165, 104984. https://doi.org/10.1016/j.supflu.2020.104984

    Article  CAS  Google Scholar 

  133. Liu, Q., Zhou, Y., Lu, J., & Zhou, Y. (2020). Novel cyclodextrin-based adsorbents for removing pollutants from wastewater: A critical review. Chemosphere, 241, 125043. https://doi.org/10.1016/j.chemosphere.2019.125043

    Article  CAS  PubMed  Google Scholar 

  134. Patil, S., Ujalambkar, V., Rathore, A., Rojatkar, S., & Pokharkar, V. (2019). Galangin loaded galactosylated pluronic F68 polymeric micelles for liver targeting. Biomedicine & Pharmacotherapy, 112, 108691. https://doi.org/10.1016/j.biopha.2019.108691

    Article  CAS  Google Scholar 

  135. Lee, J.-J., Lee, J.-H., Yim, N.-H., Han, J.-H., & Ma, J. Y. (2017). Application of galangin, an active component of Alpinia officinarum Hance (Zingiberaceae), for use in drug-eluting stents. Scientific Reports, 7(1), 8207. https://doi.org/10.1038/s41598-017-08410-2

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  136. Li, X., Wang, Y., Xiong, Y., Wu, J., Ding, H., Chen, X., … Zhang, H. (2016). Galangin induces autophagy via deacetylation of LC3 by SIRT1 in HepG2 cells. Scientific Reports, 6(1), 30496. https://doi.org/10.1038/srep30496

  137. Zhu, J., Wang, Q., Li, H., Zhang, H., Zhu, Y., Omari-Siaw, E., … Xu, X. (2018). Galangin-loaded, liver targeting liposomes: Optimization and hepatoprotective efficacy. Journal of Drug Delivery Science and Technology, 46, 339–347. https://doi.org/10.1016/j.jddst.2018.05.034

  138. Peng, X.-H., Wang, Y., Huang, D., Wang, Y., Shin, H. J., Chen, Z., … Shin, D. M. (2011). Targeted delivery of cisplatin to lung cancer using ScFvEGFR-heparin-cisplatin nanoparticles. ACS Nano, 5(12), 9480–9493. https://doi.org/10.1021/nn202410f

  139. Mei, L., Liu, Y., Xia, C., Zhou, Y., Zhang, Z., & He, Q. (2017). Polymer–drug nanoparticles combine doxorubicin carrier and heparin bioactivity functionalities for primary and metastatic cancer treatment. Molecular Pharmaceutics, 14(2), 513–522. https://doi.org/10.1021/acs.molpharmaceut.6b00979

    Article  CAS  PubMed  Google Scholar 

  140. Sun, H., Cao, D., Wu, H., Liu, H., Ke, X., & Ci, T. (2018). Development of low molecular weight heparin based nanoparticles for metastatic breast cancer therapy. International Journal of Biological Macromolecules, 112, 343–355. https://doi.org/10.1016/j.ijbiomac.2018.01.195

    Article  CAS  PubMed  Google Scholar 

  141. Newland, B., Varricchio, C., Körner, Y., Hoppe, F., Taplan, C., Newland, H., … Werner, C. (2020). Focal drug administration via heparin-containing cryogel microcarriers reduces cancer growth and metastasis. Carbohydrate Polymers, 245, 116504. https://doi.org/10.1016/j.carbpol.2020.116504

  142. Raichur, A., Thomas, Radhakrishnan, Gnanadhas, & Chakravortty, D. (2013). Intracellular delivery of doxorubicin encapsulated in novel pH-responsive chitosan/heparin nanocapsules. International Journal of Nanomedicine, 267. https://doi.org/10.2147/IJN.S37737

  143. Zhang, Z., Li, D., Li, X., Guo, Z., Liu, Y., Ma, X., & Zheng, S. (2020). PEI-modified macrophage cell membrane-coated PLGA nanoparticles encapsulating Dendrobium polysaccharides as a vaccine delivery system for ovalbumin to improve immune responses. International Journal of Biological Macromolecules, 165, 239–248. https://doi.org/10.1016/j.ijbiomac.2020.09.187

    Article  CAS  PubMed  Google Scholar 

  144. Shah, S. R., Prajapati, H. R., Sheth, D. B., Gondaliya, E. M., Vyas, A. J., Soniwala, M. M., & Chavda, J. R. (2020). Pharmacokinetics and in vivo distribution of optimized PLGA nanoparticles for pulmonary delivery of levofloxacin. Journal of Pharmacy and Pharmacology, 72(8), 1026–1037. https://doi.org/10.1111/jphp.13275

    Article  CAS  PubMed  Google Scholar 

  145. Mahar, R., Chakraborty, A., Nainwal, N., Bahuguna, R., Sajwan, M., & Jakhmola, V. (2023). Application of PLGA as a biodegradable and biocompatible polymer for pulmonary delivery of drugs. An Official Journal of the American Association of Pharmaceutical Scientists, 24(1), 39. https://doi.org/10.1208/s12249-023-02502-1

    Article  CAS  Google Scholar 

  146. Lagreca, E., Onesto, V., Di Natale, C., La Manna, S., Netti, P. A., & Vecchione, R. (2020). Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Progress in Biomaterials, 9(4), 153–174. https://doi.org/10.1007/s40204-020-00139-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Ghitman, J., Biru, E. I., Stan, R., & Iovu, H. (2020). Review of hybrid PLGA nanoparticles: Future of smart drug delivery and theranostics medicine. Materials & Design, 193, 108805. https://doi.org/10.1016/j.matdes.2020.108805

    Article  CAS  Google Scholar 

  148. Weber, C., Coester, C., Kreuter, J., & Langer, K. (2000). Desolvation process and surface characterisation of protein nanoparticles. International Journal of Pharmaceutics, 194(1), 91–102. https://doi.org/10.1016/S0378-5173(99)00370-1

    Article  CAS  PubMed  Google Scholar 

  149. Parodi, A., Molinaro, R., Sushnitha, M., Evangelopoulos, M., Martinez, J. O., Arrighetti, N., … Tasciotti, E. (2017). Bio-inspired engineering of cell- and virus-like nanoparticles for drug delivery. Biomaterials, 147, 155–168. https://doi.org/10.1016/j.biomaterials.2017.09.020

  150. Rohovie, M. J., Nagasawa, M., & Swartz, J. R. (2017). Virus-like particles: Next-generation nanoparticles for targeted therapeutic delivery. Bioengineering & Translational Medicine, 2(1), 43–57. https://doi.org/10.1002/btm2.10049

    Article  CAS  Google Scholar 

  151. Hulo, C., de Castro, E., Masson, P., Bougueleret, L., Bairoch, A., Xenarios, I., & Le Mercier, P. (2011). ViralZone: A knowledge resource to understand virus diversity. Nucleic Acids Research, 39(suppl_1), D576–D582. https://doi.org/10.1093/nar/gkq901

    Article  CAS  PubMed  Google Scholar 

  152. Czapar, A. E., Zheng, Y.-R., Riddell, I. A., Shukla, S., Awuah, S. G., Lippard, S. J., & Steinmetz, N. F. (2016). Tobacco mosaic virus delivery of phenanthriplatin for cancer therapy. ACS Nano, 10(4), 4119–4126. https://doi.org/10.1021/acsnano.5b07360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Shen, L., Zhou, J., Wang, Y., Kang, N., Ke, X., Bi, S., & Ren, L. (2015). Efficient encapsulation of Fe3O4 nanoparticles into genetically engineered hepatitis B core virus-like particles through a specific interaction for potential bioapplications. Small (Weinheim an der Bergstrasse, Germany), 11(9–10), 1190–1196. https://doi.org/10.1002/smll.201401952

    Article  CAS  PubMed  Google Scholar 

  154. Frietze, K. M., Peabody, D. S., & Chackerian, B. (2016). Engineering virus-like particles as vaccine platforms. Current Opinion in Virology, 18, 44–49. https://doi.org/10.1016/j.coviro.2016.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Whitacre, D. C., Lee, B. O., & Milich, D. R. (2009). Use of hepadnavirus core proteins as vaccine platforms. Expert Review of Vaccines, 8(11), 1565–1573. https://doi.org/10.1586/erv.09.121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Caldeira, J. C., Perrine, M., Pericle, F., & Cavallo, F. (2020). Virus-like particles as an immunogenic platform for cancer vaccines. Viruses, 12(5), 488. https://doi.org/10.3390/v12050488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Yazaki, P. J., Kassa, T., Cheung, C., Crow, D. M., Sherman, M. A., Bading, J. R., … Raubitschek, A. (2008). Biodistribution and tumor imaging of an anti-CEA single-chain antibody–albumin fusion protein. Nuclear Medicine and Biology, 35(2), 151–158. https://doi.org/10.1016/j.nucmedbio.2007.10.010

  158. Sleep, D., & Cameron, J. (1830). Evans LR (2013) Albumin as a versatile platform for drug half-life extension. Biochimica et Biophysica Acta (BBA) - General Subjects, 12, 5526–5534. https://doi.org/10.1016/j.bbagen.2013.04.023

    Article  CAS  Google Scholar 

  159. Esmaeili, F., Dinarvand, R., Ghahremani, M. H., Amini, M., Rouhani, H., Sepehri, N., … Atyabi, F. (2009). Docetaxel–albumin conjugates: Preparation, in vitro evaluation and biodistribution studies. Journal of Pharmaceutical Sciences, 98(8), 2718–2730. https://doi.org/10.1002/jps.21599

  160. Sepehri, N., Rouhani, H., Ghanbarpour, A. R., Gharghabi, M., Tavassolian, F., Amini, M., … Dinarvand, R. (2014). Human serum albumin conjugates of 7-ethyl-10-hydroxycamptothecin (SN38) for cancer treatment. BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/963507

  161. Seib, F. P., Jones, G. T., Rnjak-Kovacina, J., Lin, Y., & Kaplan, D. L. (2013). pH-dependent anticancer drug release from silk nanoparticles. Advanced Healthcare Materials, 2(12), 1606–1611. https://doi.org/10.1002/adhm.201300034

    Article  CAS  PubMed  Google Scholar 

  162. Montalbán, M., Coburn, J., Lozano-Pérez, A., Cenis, J., Víllora, G., & Kaplan, D. (2018). Production of curcumin-loaded silk fibroin nanoparticles for cancer therapy. Nanomaterials, 8(2), 126. https://doi.org/10.3390/nano8020126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Huang, L., Tao, K., Liu, J., Qi, C., Xu, L., Chang, P., … Wang, L. (2016). Design and fabrication of multifunctional sericin nanoparticles for tumor targeting and pH-responsive subcellular delivery of cancer chemotherapy drugs. ACS Applied Materials & Interfaces, 8(10), 6577–6585. https://doi.org/10.1021/acsami.5b11617

  164. Belbachir, K., Noreen, R., Gouspillou, G., & Petibois, C. (2009). Collagen types analysis and differentiation by FTIR spectroscopy. Analytical and Bioanalytical Chemistry, 395(3), 829–837. https://doi.org/10.1007/s00216-009-3019-y

    Article  CAS  PubMed  Google Scholar 

  165. Rodríguez-Cabello, J. C., Arias, F. J., Rodrigo, M. A., & Girotti, A. (2016). Elastin-like polypeptides in drug delivery. Advanced Drug Delivery Reviews, 97, 85–100. https://doi.org/10.1016/j.addr.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  166. Smits, F. C. M., Buddingh, B. C., van Eldijk, M. B., & van Hest, J. C. M. (2015). Elastin-like polypeptide based nanoparticles: Design rationale toward nanomedicine. Macromolecular Bioscience, 15(1), 36–51. https://doi.org/10.1002/mabi.201400419

    Article  CAS  PubMed  Google Scholar 

  167. Despanie, J., Dhandhukia, J. P., Hamm-Alvarez, S. F., & MacKay, J. A. (2016). Elastin-like polypeptides: Therapeutic applications for an emerging class of nanomedicines. Journal of Controlled Release, 240, 93–108. https://doi.org/10.1016/j.jconrel.2015.11.010

    Article  CAS  PubMed  Google Scholar 

  168. Shah, M., Hsueh, P., Sun, G., Chang, H. Y., Janib, S. M., & MacKay, J. A. (2012). Biodegradation of elastin-like polypeptide nanoparticles. Protein Science, 21(6), 743–750. https://doi.org/10.1002/pro.2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. MacEwan, S. R., & Chilkoti, A. (2014). Applications of elastin-like polypeptides in drug delivery. Journal of Controlled Release, 190, 314–330. https://doi.org/10.1016/j.jconrel.2014.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Sarangthem, V., Singh, T. D., & Dinda, A. K. (2021). Emerging role of elastin-like polypeptides in regenerative medicine. Advances in Wound Care, 10(5), 257–269. https://doi.org/10.1089/wound.2019.1085

    Article  PubMed  PubMed Central  Google Scholar 

  171. Araújo, R., Santos, S., Igne Ferreira, E., & Giarolla, J. (2018). New advances in general biomedical applications of PAMAM dendrimers. Molecules, 23(11), 2849. https://doi.org/10.3390/molecules23112849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chittasupho, C., Anuchapreeda, S., & Sarisuta, N. (2017). CXCR4 targeted dendrimer for anti-cancer drug delivery and breast cancer cell migration inhibition. European Journal of Pharmaceutics and Biopharmaceutics, 119, 310–321. https://doi.org/10.1016/j.ejpb.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  173. Mishra, V., & Kesharwani, P. (2016). Dendrimer technologies for brain tumor. Drug Discovery Today, 21(5), 766–778. https://doi.org/10.1016/j.drudis.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  174. Liu, S., Guo, Y., Huang, R., Li, J., Huang, S., Kuang, Y., … Jiang, C. (2012). Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials, 33(19), 4907–4916. https://doi.org/10.1016/j.biomaterials.2012.03.031

  175. Wu, X.-X., Kakehi, Y., Mizutani, Y., Kamoto, T., Kinoshita, H., Isogawa, Y., … Ogawa, O. (2002). Doxorubicin enhances TRAIL-induced apoptosis in prostate cancer. International Journal of Oncology. https://doi.org/10.3892/ijo.20.5.949

  176. Duncan, R., & Izzo, L. (2005). Dendrimer biocompatibility and toxicity. Advanced Drug Delivery Reviews, 57(15), 2215–2237. https://doi.org/10.1016/j.addr.2005.09.019

    Article  CAS  PubMed  Google Scholar 

  177. Gao, Y., Shen, M., & Shi, X. (2021). Interaction of dendrimers with the immune system: An insight into cancer nanotheranostics. VIEW, 2(3). https://doi.org/10.1002/VIW.20200120

  178. Shcharbin, D., Janaszewska, A., Klajnert-Maculewicz, B., Ziemba, B., Dzmitruk, V., Halets, I., … Bryszewska, M. (2014). How to study dendrimers and dendriplexes III. Biodistribution, pharmacokinetics and toxicity in vivo. Journal of Controlled Release, 181, 40–52. https://doi.org/10.1016/j.jconrel.2014.02.021

  179. Kunzmann, A., Andersson, B., Thurnherr, T., Krug, H., Scheynius, A., & Fadeel, B. (2011). Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta - General Subjects, 1810(3), 361–373. https://doi.org/10.1016/j.bbagen.2010.04.007

    Article  CAS  Google Scholar 

  180. Mousa, S., Bharali, D., Khalil, M., Gurbuz, M., & Simone. (2009). Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers. International Journal of Nanomedicine, 1. https://doi.org/10.2147/IJN.S4241

  181. Tarach, P., & Janaszewska, A. (2021). Recent advances in preclinical research using PAMAM dendrimers for cancer gene therapy. International Journal of Molecular Sciences, 22(6), 2912. https://doi.org/10.3390/ijms22062912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Rosli, N. F., Mayorga-Martinez, C. C., Fisher, A. C., Alduhaish, O., Webster, R. D., & Pumera, M. (2020). Arsenene nanomotors as anticancer drug carrier. Applied Materials Today, 21, 100819. https://doi.org/10.1016/j.apmt.2020.100819

    Article  Google Scholar 

  183. Xing, Y., Zhou, M., Du, X., Li, X., Li, J., Xu, T., & Zhang, X. (2019). Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery. Applied Materials Today, 17, 85–91. https://doi.org/10.1016/j.apmt.2019.07.017

    Article  Google Scholar 

  184. Dhar, P., Narendren, S., Gaur, S. S., Sharma, S., Kumar, A., & Katiyar, V. (2020). Self-propelled cellulose nanocrystal based catalytic nanomotors for targeted hyperthermia and pollutant remediation applications. International Journal of Biological Macromolecules, 158, 1020–1036. https://doi.org/10.1016/j.ijbiomac.2020.04.204

    Article  CAS  PubMed  Google Scholar 

  185. Wang, W., Duan, W., Sen, A., & Mallouk, T. E. (2013). Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proceedings of the National Academy of Sciences, 110(44), 17744–17749. https://doi.org/10.1073/pnas.1311543110

    Article  ADS  Google Scholar 

  186. Dong, R., Zhang, Q., Gao, W., Pei, A., & Ren, B. (2016). Highly efficient light-driven TiO2 –Au Janus micromotors. ACS Nano, 10(1), 839–844. https://doi.org/10.1021/acsnano.5b05940

    Article  CAS  PubMed  Google Scholar 

  187. Song, K., Mohseni, M., & Taghipour, F. (2019). Mechanisms investigation on bacterial inactivation through combinations of UV wavelengths. Water Research, 163, 114875. https://doi.org/10.1016/j.watres.2019.114875

    Article  CAS  PubMed  Google Scholar 

  188. Cotin, G., Piant, S., Mertz, D., Felder-Flesch, D., & Begin-Colin, S. (2018). Iron oxide nanoparticles for biomedical applications: Synthesis, functionalization, and application. In Iron Oxide Nanoparticles for Biomedical Applications (43–88). Elsevier. https://doi.org/10.1016/B978-0-08-101925-2.00002-4

  189. Sun, Y., Pan, R., Chen, Y., Wang, Y., Sun, L., Wang, N., … Wang, G. P. (2023). Efficient preparation of a magnetic helical carbon nanomotor for targeted anticancer drug delivery. ACS Nanoscience Au, 3(1), 94–102. https://doi.org/10.1021/acsnanoscienceau.2c00042

  190. Chowdhury, S. R., Mukherjee, S., Das, S., Patra, C. R., & Iyer, P. K. (2017). Multifunctional (3-in-1) cancer theranostics applications of hydroxyquinoline-appended polyfluorene nanoparticles. Chemical Science, 8(11), 7566–7575. https://doi.org/10.1039/C7SC03321D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Olszewska‐Widdrat, A., Bennet, M., Mickoleit, F., Widdrat, M., Tarabout, C., Reichel, V., … Faivre, D. (2021). Bacteriophage‐templated assembly of magnetic nanoparticles and their actuation potential. ChemNanoMat, 7(8), 942–949. https://doi.org/10.1002/cnma.202100053

  192. Chen, C., Wang, P., Wu, L.-F., & Song, T. (2021). Biocompatibility of marine magnetotactic ovoid strain MO-1 for in vivo application. Journal of Oceanology and Limnology, 39(6), 2107–2115. https://doi.org/10.1007/s00343-021-0420-7

    Article  ADS  Google Scholar 

  193. Taherkhani, S., Mohammadi, M., Daoud, J., Martel, S., & Tabrizian, M. (2014). Covalent binding of nanoliposomes to the surface of magnetotactic bacteria for the synthesis of self-propelled therapeutic agents. ACS Nano, 8(5), 5049–5060. https://doi.org/10.1021/nn5011304

    Article  CAS  PubMed  Google Scholar 

  194. Schübbe, S., Williams, T. J., Xie, G., Kiss, H. E., Brettin, T. S., Martinez, D., … Bazylinski, D. A. (2009). Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Applied and Environmental Microbiology, 75(14), 4835–4852. https://doi.org/10.1128/AEM.02874-08

  195. Wan, M., Li, T., Chen, H., Mao, C., & Shen, J. (2021). Biosafety, functionalities, and applications of biomedical micro/nanomotors. Angewandte Chemie International Edition, 60(24), 13158–13176. https://doi.org/10.1002/anie.202013689

    Article  CAS  PubMed  Google Scholar 

  196. Gupta, A., Soni, S., Chauhan, N., Khanuja, M., & Jain, U. (2022). Nanobots-based advancement in targeted drug delivery and imaging: An update. Journal of Controlled Release, 349, 97–108. https://doi.org/10.1016/j.jconrel.2022.06.020

    Article  CAS  PubMed  Google Scholar 

  197. Bitounis, D., Ali-Boucetta, H., Hong, B. H., Min, D., & Kostarelos, K. (2013). Prospects and challenges of graphene in biomedical applications. Advanced Materials, 25(16), 2258–2268. https://doi.org/10.1002/adma.201203700

    Article  CAS  PubMed  Google Scholar 

  198. Yin, F., Gu, B., Lin, Y., Panwar, N., Tjin, S. C., Qu, J., … Yong, K.-T. (2017). Functionalized 2D nanomaterials for gene delivery applications. Coordination Chemistry Reviews, 347, 77–97. https://doi.org/10.1016/j.ccr.2017.06.024

  199. Yin, T., Liu, J., Zhao, Z., Zhao, Y., Dong, L., Yang, M., … Huo, M. (2017). Redox sensitive hyaluronic acid‐decorated graphene oxide for photothermally controlled tumor‐cytoplasm‐selective rapid drug delivery. Advanced Functional Materials, 27(14). https://doi.org/10.1002/adfm.201604620

  200. Zhu, C., Du, D., & Lin, Y. (2017). Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosensors and Bioelectronics, 89, 43–55. https://doi.org/10.1016/j.bios.2016.06.045

    Article  CAS  PubMed  Google Scholar 

  201. Choi, C. A., Lee, J. E., Mazrad, Z. A. I., In, I., Jeong, J. H., & Park, S. Y. (2018). Redox- and pH-responsive fluorescent carbon nanoparticles-MnO2-based FRET system for tumor-targeted drug delivery in vivo and in vitro. Journal of Industrial and Engineering Chemistry, 63, 208–219. https://doi.org/10.1016/j.jiec.2018.02.017

    Article  CAS  Google Scholar 

  202. Huang, G., Zhang, K.-L., Chen, S., Li, S.-H., Wang, L.-L., Wang, L.-P., … Yang, H.-H. (2017). Manganese-iron layered double hydroxide: A theranostic nanoplatform with pH-responsive MRI contrast enhancement and drug release. Journal of Materials Chemistry B, 5(20), 3629–3633. https://doi.org/10.1039/C7TB00794A

  203. Kalantar-zadeh, K., Ou, J. Z., Daeneke, T., Mitchell, A., Sasaki, T., & Fuhrer, M. S. (2016). Two dimensional and layered transition metal oxides. Applied Materials Today, 5, 73–89. https://doi.org/10.1016/j.apmt.2016.09.012

    Article  Google Scholar 

  204. Li, Z., & Wong, S. L. (2017). Functionalization of 2D transition metal dichalcogenides for biomedical applications. Materials Science and Engineering: C, 70, 1095–1106. https://doi.org/10.1016/j.msec.2016.03.039

    Article  CAS  PubMed  Google Scholar 

  205. Yang, D., Feng, L., Dougherty, C. A., Luker, K. E., Chen, D., Cauble, M. A., … Hong, H. (2016). In vivo targeting of metastatic breast cancer via tumor vasculature-specific nano-graphene oxide. Biomaterials, 104, 361–371. https://doi.org/10.1016/j.biomaterials.2016.07.029

  206. Alibolandi, M., Mohammadi, M., Taghdisi, S. M., Ramezani, M., & Abnous, K. (2017). Fabrication of aptamer decorated dextran coated nano-graphene oxide for targeted drug delivery. Carbohydrate Polymers, 155, 218–229. https://doi.org/10.1016/j.carbpol.2016.08.046

    Article  CAS  PubMed  Google Scholar 

  207. Oh, J.-M., Choi, S.-J., Kim, S.-T., & Choy, J.-H. (2006). Cellular uptake mechanism of an inorganic nanovehicle and its drug conjugates: Enhanced efficacy due to clathrin-mediated endocytosis. Bioconjugate Chemistry, 17(6), 1411–1417. https://doi.org/10.1021/bc0601323

    Article  CAS  PubMed  Google Scholar 

  208. Tang, L., Xie, X., Li, C., Xu, Y., Zhu, W., & Wang, L. (2022). Regulation of structure and anion-exchange performance of layered double hydroxide: Function of the metal cation composition of a brucite-like layer. Materials, 15(22), 7983. https://doi.org/10.3390/ma15227983

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kim, T.-H., Lee, G. J., Kang, J.-H., Kim, H.-J., Kim, T., & Oh, J.-M. (2014). Anticancer drug-incorporated layered double hydroxide nanohybrids and their enhanced anticancer therapeutic efficacy in combination cancer treatment. BioMed Research International, 2014, 1–11. https://doi.org/10.1155/2014/193401

    Article  CAS  Google Scholar 

  210. Peng, L., Mei, X., He, J., Xu, J., Zhang, W., Liang, R., … Duan, X. (2018). Monolayer nanosheets with an extremely high drug loading toward controlled delivery and cancer theranostics. Advanced Materials, 30(16). https://doi.org/10.1002/adma.201707389

  211. Eng, A. Y. S., Ambrosi, A., Sofer, Z., Šimek, P., & Pumera, M. (2014). Electrochemistry of transition metal dichalcogenides: Strong dependence on the metal-to-chalcogen composition and exfoliation method. ACS Nano, 8(12), 12185–12198. https://doi.org/10.1021/nn503832j

    Article  CAS  PubMed  Google Scholar 

  212. Zhu, X., Ji, X., Kong, N., Chen, Y., Mahmoudi, M., Xu, X., … Farokhzad, O. C. (2018). Intracellular mechanistic understanding of 2D MoS2 nanosheets for anti-exocytosis-enhanced synergistic cancer therapy. ACS Nano, 12(3), 2922–2938. https://doi.org/10.1021/acsnano.8b00516

  213. Li, Z., Zhang, H., Han, J., Chen, Y., Lin, H., & Yang, T. (2018). Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Advanced Materials, 30(25). https://doi.org/10.1002/adma.201706981

  214. Han, X., Huang, J., Lin, H., Wang, Z., Li, P., & Chen, Y. (2018). 2D ultrathin MXene‐based drug‐delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 7(9). https://doi.org/10.1002/adhm.201701394

  215. Lin, H., Wang, X., Yu, L., Chen, Y., & Shi, J. (2017). Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17(1), 384–391. https://doi.org/10.1021/acs.nanolett.6b04339

    Article  ADS  CAS  PubMed  Google Scholar 

  216. Nasrallah, G. K., Al-Asmakh, M., Rasool, K., & Mahmoud, K. A. (2018). Ecotoxicological assessment of Ti3C2Tx (MXene) using a zebrafish embryo model. Environmental Science: Nano, 5(4), 1002–1011. https://doi.org/10.1039/C7EN01239J

    Article  CAS  Google Scholar 

  217. Rafieerad, A., Yan, W., Sequiera, G. L., Sareen, N., Abu‐El‐Rub, E., Moudgil, M., & Dhingra, S. (2019). Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Advanced Healthcare Materials, 8(16). https://doi.org/10.1002/adhm.201900569

  218. George, S. M., & Kandasubramanian, B. (2020). Advancements in MXene-polymer composites for various biomedical applications. Ceramics International, 46(7), 8522–8535. https://doi.org/10.1016/j.ceramint.2019.12.257

    Article  CAS  Google Scholar 

  219. Pang, B., Yang, H., Wang, L., Chen, J., Jin, L., & Shen, B. (2021). Aptamer modified MoS2 nanosheets application in targeted photothermal therapy for breast cancer. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 608, 125506. https://doi.org/10.1016/j.colsurfa.2020.125506

    Article  CAS  Google Scholar 

  220. Liu, J., Zheng, J., Nie, H., Chen, H., Li, B., & Jia, L. (2020). Co-delivery of erlotinib and doxorubicin by MoS2 nanosheets for synergetic photothermal chemotherapy of cancer. Chemical Engineering Journal, 381, 122541. https://doi.org/10.1016/j.cej.2019.122541

    Article  CAS  Google Scholar 

  221. Cai, S., Yan, J., Xiong, H., Wu, Q., Xing, H., Liu, Y., … Liu, Z. (2020). Aptamer-functionalized molybdenum disulfide nanosheets for tumor cell targeting and lysosomal acidic environment/NIR laser responsive drug delivery to realize synergetic chemo-photothermal therapeutic effects. International Journal of Pharmaceutics, 590, 119948. https://doi.org/10.1016/j.ijpharm.2020.119948

  222. Li, G., Meng, F., Lu, T., Wei, L., Pan, X., Nong, Z., … Li, X. (2021). Functionalised molybdenum disulfide nanosheets for co-delivery of doxorubicin and siRNA for combined chemo/gene/photothermal therapy on multidrug-resistant cancer. Journal of Pharmacy and Pharmacology, 73(8), 1128–1135. https://doi.org/10.1093/jpp/rgab059

  223. Xu, S., Zhong, Y., Nie, C., Pan, Y., Adeli, M., & Haag, R. (2021). Co‐delivery of doxorubicin and chloroquine by polyglycerol functionalized MoS2 nanosheets for efficient multidrug‐resistant cancer therapy. Macromolecular Bioscience, 21(11). https://doi.org/10.1002/mabi.202100233

  224. Li, X., Kong, L., Hu, W., Zhang, C., Pich, A., Shi, X., … Xing, L. (2022). Safe and efficient 2D molybdenum disulfide platform for cooperative imaging-guided photothermal-selective chemotherapy: A preclinical study. Journal of Advanced Research, 37, 255–266. https://doi.org/10.1016/j.jare.2021.08.004

  225. Liu, K., Yan, S., Liu, Z., Wang, D., Yang, Q., Jiang, X., … Tang, H. (2022). New anti-tumor strategy based on acid-triggered self-destructive and near-infrared laser light responses of nano-biocatalysts integrating starvation–chemo–photothermal therapies. Cancer Nanotechnology, 13(1), 11. https://doi.org/10.1186/s12645-022-00117-y

  226. Liu, G., Zou, J., Tang, Q., Yang, X., Zhang, Y., Zhang, Q., … Dong, X. (2017). Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Applied Materials & Interfaces, 9(46), 40077–40086. https://doi.org/10.1021/acsami.7b13421

  227. Xu, Y., Wang, Y., An, J., Sedgwick, A. C., Li, M., Xie, J., … Kim, J. S. (2022). 2D-ultrathin MXene/DOXjade platform for iron chelation chemo-photothermal therapy. Bioactive Materials, 14, 76–85. https://doi.org/10.1016/j.bioactmat.2021.12.011

  228. Shurbaji, S., Manaph, N. P. A., Ltaief, S. M., Al-Shammari, A. R., Elzatahry, A., & Yalcin, H. C. (2021). Characterization of MXene as a cancer photothermal agent under physiological conditions. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.689718

  229. Wen, H., Liu, P., Jiang, Z., Peng, H., & Liu, H. (2023). Redox-responsive MXene-SS-PEG nanomaterials for delivery of doxorubicin. Inorganic Chemistry Communications, 147, 110227. https://doi.org/10.1016/j.inoche.2022.110227

    Article  CAS  Google Scholar 

  230. Mousavi, S. M., Hashemi, S. A., Ghahramani, Y., Azhdari, R., Yousefi, K., Gholami, A., … Chiang, W.-H. (2022). Antiproliferative and apoptotic effects of graphene oxide @AlFu MOF based saponin natural product on OSCC line. Pharmaceuticals, 15(9), 1137. https://doi.org/10.3390/ph15091137

  231. Tousian, B., Ghasemi, M. H., & Khosravi, A. R. (2022). Targeted chitosan nanoparticles embedded into graphene oxide functionalized with caffeic acid as a potential drug delivery system: New insight into cancer therapy. International Journal of Biological Macromolecules, 222, 295–304. https://doi.org/10.1016/j.ijbiomac.2022.09.084

    Article  CAS  PubMed  Google Scholar 

  232. Eivazzadeh-Keihan, R., Asgharnasl, S., Moghim Aliabadi, H. A., Tahmasebi, B., Radinekiyan, F., Maleki, A., … Shalan, A. E. (2022). Magnetic graphene oxide–lignin nanobiocomposite: A novel, eco-friendly and stable nanostructure suitable for hyperthermia in cancer therapy. RSC Advances, 12(6), 3593–3601. https://doi.org/10.1039/D1RA08640E

  233. Boddu, A., Obireddy, S. R., Zhang, D., Rao, K. S. V. K., & Lai, W.-F. (2022). ROS-generating, pH-responsive and highly tunable reduced graphene oxide-embedded microbeads showing intrinsic anticancer properties and multi-drug co-delivery capacity for combination cancer therapy. Drug Delivery, 29(1), 2481–2490. https://doi.org/10.1080/10717544.2022.2100512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Yousefipour, K., Rahimi, H.-R., Shakibaei, M., Ranjbar, M., Ameri, A., & Adeli-Sardou, M. (2022). Preparation, characterization, and evaluation of cellular toxicity of Mg/Ca-layered double hydroxide on human lung carcinoma (A549) cell lines. BioNanoScience, 12(3), 946–956. https://doi.org/10.1007/s12668-022-00959-1

    Article  Google Scholar 

  235. Mohammadzadeh, V., Norouzi, A., & Ghorbani, M. (2022). Multifunctional nanocomposite based on lactose@layered double hydroxide-hydroxyapatite as a pH-sensitive system for targeted delivery of doxorubicin to liver cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 651, 129723. https://doi.org/10.1016/j.colsurfa.2022.129723

    Article  CAS  Google Scholar 

  236. Liang, G., Wang, H., Shi, H., Wang, H., Zhu, M., Jing, A., … Li, G. (2020). Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment. Journal of Nanobiotechnology, 18(1), 154. https://doi.org/10.1186/s12951-020-00713-3

  237. Tsai, M.-F., Lo, Y.-L., Soorni, Y., Su, C.-H., Sivasoorian, S. S., Yang, J.-Y., & Wang, L.-F. (2021). Near-infrared light-triggered drug release from ultraviolet- and redox-responsive polymersome encapsulated with core–shell upconversion nanoparticles for cancer therapy. ACS Applied Bio Materials, 4(4), 3264–3275. https://doi.org/10.1021/acsabm.0c01621

    Article  CAS  PubMed  Google Scholar 

  238. Wang, F., Zhao, Q., Zhang, L., Wang, H., Zhang, K., Qin, S., … Shan, C.-X. (2021). A nanocomposite of rare earth upconversion nanoparticles and nanodiamonds for dual-mode imaging and drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 624, 126815. https://doi.org/10.1016/j.colsurfa.2021.126815

  239. Gnach, A., Lipinski, T., Bednarkiewicz, A., Rybka, J., & Capobianco, J. A. (2015). Upconverting nanoparticles: Assessing the toxicity. Chemical Society Reviews, 44(6), 1561–1584. https://doi.org/10.1039/C4CS00177J

    Article  CAS  PubMed  Google Scholar 

  240. Xiang, J., Xu, L., Gong, H., Zhu, W., Wang, C., Xu, J., … Liu, Z. (2015). Antigen-loaded upconversion nanoparticles for dendritic cell stimulation, tracking, and vaccination in dendritic cell-based immunotherapy. ACS Nano, 9(6), 6401–6411. https://doi.org/10.1021/acsnano.5b02014

  241. Wu, X., Chen, G., Shen, J., Li, Z., Zhang, Y., & Han, G. (2015). Upconversion nanoparticles: A versatile solution to multiscale biological imaging. Bioconjugate Chemistry, 26(2), 166–175. https://doi.org/10.1021/bc5003967

    Article  CAS  PubMed  Google Scholar 

  242. Peng, P., Wu, N., Ye, L., Jiang, F., Feng, W., Li, F., … Hong, M. (2020). Biodegradable inorganic upconversion nanocrystals for in vivo applications. ACS Nano, 14(12), 16672–16680. https://doi.org/10.1021/acsnano.0c02601

  243. Ang, L. Y., Lim, M. E., Ong, L. C., & Zhang, Y. (2011). Applications of upconversion nanoparticles in imaging, detection and therapy. Nanomedicine, 6(7), 1273–1288. https://doi.org/10.2217/nnm.11.108

    Article  PubMed  Google Scholar 

  244. Han, S., Deng, R., Xie, X., & Liu, X. (2014). Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angewandte Chemie International Edition, 53(44), 11702–11715. https://doi.org/10.1002/anie.201403408

    Article  CAS  PubMed  Google Scholar 

  245. Ocean, A. J., Niedzwiecki, D., Atkins, J. N., Parker, B., O’Neil, B. H., Lee, J. W., … Goldberg, R. M. (2008). LE-SN38 for metastatic colorectal cancer after progression on oxaliplatin: Results of CALGB 80402. Journal of Clinical Oncology, 26(15_suppl), 4109–4109. https://doi.org/10.1200/jco.2008.26.15_suppl.4109

  246. Taléns-Visconti, R., Díez-Sales, O., de Julián-Ortiz, J. V., & Nácher, A. (2022). Nanoliposomes in cancer therapy: Marketed products and current clinical trials. International Journal of Molecular Sciences, 23(8), 4249. https://doi.org/10.3390/ijms23084249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Kester, M., Bassler, J., Fox, T. E., Carter, C. J., Davidson, J. A., & Parette, M. R. (2015). Preclinical development of a C6-ceramide nanoliposome, a novel sphingolipid therapeutic. Biological Chemistry, 396(6–7), 737–747. https://doi.org/10.1515/hsz-2015-0129

    Article  CAS  PubMed  Google Scholar 

  248. Chao, J., Lin, J., Frankel, P., Clark, A. J., Wiley, D. T., Garmey, E., … Yen, Y. (2017). Pilot trial of CRLX101 in patients with advanced, chemotherapy-refractory gastroesophageal cancer. Journal of Gastrointestinal Oncology, 8(6), 962–969. https://doi.org/10.21037/jgo.2017.08.10

  249. Gabizon, A. A., Tahover, E., Golan, T., Geva, R., Perets, R., Amitay, Y., … Ohana, P. (2020). Pharmacokinetics of mitomycin-c lipidic prodrug entrapped in liposomes and clinical correlations in metastatic colorectal cancer patients. Investigational New Drugs, 38(5), 1411–1420. https://doi.org/10.1007/s10637-020-00897-3

  250. Attia, M. F., Anton, N., Wallyn, J., Omran, Z., & Vandamme, T. F. (2019). An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology, 71(8), 1185–1198. https://doi.org/10.1111/jphp.13098

    Article  CAS  PubMed  Google Scholar 

  251. Valle, J. W., Armstrong, A., Newman, C., Alakhov, V., Pietrzynski, G., Brewer, J., … Ranson, M. (2011). A phase 2 study of SP1049C, doxorubicin in P-glycoprotein-targeting pluronics, in patients with advanced adenocarcinoma of the esophagus and gastroesophageal junction. Investigational New Drugs, 29(5), 1029–1037. https://doi.org/10.1007/s10637-010-9399-1

  252. Ulldemolins, A., Seras-Franzoso, J., Andrade, F., Rafael, D., Abasolo, I., Gener, P., & Schwartz Jr, S. (2021). Perspectives of nano-carrier drug delivery systems to overcome cancer drug resistance in the clinics. Cancer Drug Resistance. https://doi.org/10.20517/cdr.2020.59

Download references

Acknowledgements

 We are thankful to School of Health Sciences and Technology (SoHST), UPES, Dehradun.

Author information

Authors and Affiliations

Authors

Contributions

Vishal Kumar Deb: Writing – original draft, Writing – review & editing. Nidhi Chauhan: Supervision, Writing – review & editing, Ramesh Chandra: Supervision & Editing, Utkarsh Jain: Conceptualization, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Utkarsh Jain.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Consent for Publication

We, the authors of this manuscript, give our consent for the publication of identifiable details of the above-titled manuscript to be published in this journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, V.K., Chauhan, N., Chandra, R. et al. Recent Progression in Controlled Drug Delivery Through Advanced Functional Nanomaterials in Cancer Therapy. BioNanoSci. (2024). https://doi.org/10.1007/s12668-023-01297-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12668-023-01297-6

Keywords

Navigation