NeRF-OR: neural radiance fields for operating room scene reconstruction from sparse-view RGB-D videos

Author:

Gerats Beerend G. A.ORCID,Wolterink Jelmer M.ORCID,Broeders Ivo A. M. J.ORCID

Abstract

Abstract Purpose RGB-D cameras in the operating room (OR) provide synchronized views of complex surgical scenes. Assimilation of this multi-view data into a unified representation allows for downstream tasks such as object detection and tracking, pose estimation, and action recognition. Neural radiance fields (NeRFs) can provide continuous representations of complex scenes with limited memory footprint. However, existing NeRF methods perform poorly in real-world OR settings, where a small set of cameras capture the room from entirely different vantage points. In this work, we propose NeRF-OR, a method for 3D reconstruction of dynamic surgical scenes in the OR. Methods Where other methods for sparse-view datasets use either time-of-flight sensor depth or dense depth estimated from color images, NeRF-OR uses a combination of both. The depth estimations mitigate the missing values that occur in sensor depth images due to reflective materials and object boundaries. We propose to supervise with surface normals calculated from the estimated depths, because these are largely scale invariant. Results We fit NeRF-OR to static surgical scenes in the 4D-OR dataset and show that its representations are geometrically accurate, where state of the art collapses to sub-optimal solutions. Compared to earlier work, NeRF-OR grasps fine scene details while training 30$$\times $$ × faster. Additionally, NeRF-OR can capture whole-surgery videos while synthesizing views at intermediate time values with an average PSNR of 24.86 dB. Last, we find that our approach has merit in sparse-view settings beyond those in the OR, by benchmarking on the NVS-RGBD dataset that contains as few as three training views. NeRF-OR synthesizes images with a PSNR of 26.72 dB, a 1.7% improvement over state of the art. Conclusion Our results show that NeRF-OR allows for novel view synthesis with videos captured by a small number of cameras with entirely different vantage points, which is the typical camera setting in the OR. Code is available via: github.com/Beerend/NeRF-OR.

Funder

Johnson and Johnson

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3