Pulp delignification and refining: impact on the supramolecular structure of softwood fibers

Author:

Esteves Cláudia VicenteORCID,Brännvall ElisabetORCID,Stevanic Jasna S.ORCID,Larsson Per TomasORCID

Abstract

AbstractThe effect on softwood fiber wall nanostructure of kraft cooking, oxygen delignification and refining was evaluated by X-ray scattering. A recently developed simulation method for modelling small angle X-ray scattering (SAXS) data was used to estimate the apparent average sizes of solids (AAPS) and interstitial spaces in the fiber wall (AACS). Fiber saturation point and wide angle X-ray scattering were also used to calculate the pore volume in the fiber wall and the crystallite size of the fibril, respectively. The experimental modelled SAXS data was able to give consistent values for each kraft-cooked and oxygen-delignified pulp. Kraft delignification seems to have the major influence on the fiber nanostructure modification, while oxygen delignification has little or no significant impact even for different kappa numbers. The particle sizes values were more stable than the cavities sizes and no significant differences were seen between different delignification processes, refining or delignification degree. Pulps evaluated after PFI-refining, showed an increase in the fiber wall porosity evaluated by FSP and an increase in the interstitial spaces in the fiber wall, while the crystallite size and the particle sizes were very little or not affected at all.

Funder

Stiftelsen Nils och Dorthi Troëdssons Forskningsfond

RISE Research Institutes of Sweden

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3