Thermoresponsive hydrogels with sulfated polysaccharide-derived copolymers: the effect of carbohydrate backbones on the responsive and mechanical properties

Author:

Zeng Kui,Xu Dan,Gong Shuaiyu,Lu Yi-Tung,Vana Philipp,Groth Thomas,Zhang Kai

Abstract

Abstract Thermoresponsive hydrogels based on ionic cellulose/chitosan are widely used various fields, such as smart windows and tissue engineering, while the effect of carbohydrate backbones of cellulose/chitosan on the thermal response and mechanical properties of hydrogels has received less attention so far. Herein, poly(2(dimethylamino)ethyl methacrylate) (PDMAEMA)-grafted cellulose sulfate (P-CS) and PDMAEMA-grafted chitosan sulfate (P-CHS) as research models are successfully synthesized through multi-step reactions. The P-CS and P-CHS polymers are further applied in crosslinked polyacrylamide networks, resulting in the P-CS and P-CHS hydrogels. Compared to P-CS hydrogels, P-CHS hydrogels could obviously block the transmission of visible light when the temperature is changed from 25 to 42 °C. In contrast to P-CHS hydrogels, the P-CS hydrogels change easily from soft and weak state to stiff and strong state according to their mechanical behaviors. These results indicate that different carbohydrate backbones of cellulose and chitosan should have caused distinct aggregation behaviors of corresponding P-CS and P-CHS hydrogels, which are accompanied by different light transmittance and mechanical properties. Graphical abstract Thermoresponsive hydrogels using PDMAEMA-grafted ionic cellulose sulfate (P-CS) and chitosan sulfate (P-CHS) are successfully prepared. Distinct carbohydrate backbone displayed different effects on the thermoresponsive and mechanical properties of hydrogels.

Funder

China Scholarship Council

Deutsche Forschungsgemeinschaft

Georg-August-Universität Göttingen

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3