Nanoparticle release from anionic nanocellulose hydrogel matrix

Author:

Auvinen Vili-VeliORCID,Laurén Patrick,Shen Boxuan,Isokuortti Jussi,Durandin Nikita,Lajunen Tatu,Linko Veikko,Laaksonen Timo

Abstract

AbstractNanocellulose hydrogels have been shown to be excellent platforms for sustained delivery of drug molecules. In this study, we examine the suitability of anionic nanocellulose hydrogels for the sustained release of various nanoparticles. Systems releasing nanoparticles could produce applications especially for therapeutic nanocarriers, whose life-times in vivo might be limited. Micelles, liposomes and DNA origami nanostructures were incorporated into the nanocellulose hydrogels, and their release rates were measured. Two different hydrogel qualities (with 1% and 2% mass of fiber content) were used for each nanoparticle formulation. We showed that the drug release rates depend on nanoparticle size, shape, and charge. Smaller particles with neutral charge were released faster from 1% hydrogels than from 2% hydrogels. Nanoparticles with cationic labeling were retained in both hydrogels, whereas for the neutral nanoparticles, we were able to determine the cut-off size for released particles for both hydrogels. Rod-shaped DNA origami were released rapidly even though their length was above the cut-off size of spherical particles, indicating that their smaller radial dimension facilitates their fast release. Based on our results, anionic nanocellulose hydrogels are versatile platforms for the sustained release of the chosen model nanoparticles (liposomes, micelles, and DNA origami). Alternatively, for the tightly bound nanoparticles, this could lead to nanoparticle reservoirs within hydrogels, which could act as immobilized drug release systems.

Funder

HORIZON EUROPE European Research Council

Phospholipid Research Center

Instrumentariumin Tiedesäätiö

Silmäsäätiöiden Tohtoripooli

Jane ja Aatos Erkon Säätiö

Emil Aaltosen Säätiö

Sigrid Juséliuksen Säätiö

Academy of Finland

VINNOVA

University of Helsinki including Helsinki University Central Hospital

Publisher

Springer Science and Business Media LLC

Subject

Polymers and Plastics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3