FastTTPS: fast approach for video transcoding time prediction and scheduling for HTTP adaptive streaming videos

Author:

Agrawal PrateekORCID,Zabrovskiy Anatoliy,Ilangovan Adithyan,Timmerer Christian,Prodan Radu

Abstract

AbstractHTTP adaptive streaming of video content becomes an integrated part of the Internet and dominates other streaming protocols and solutions. The duration of creating video content for adaptive streaming ranges from seconds or up to several hours or days, due to the plethora of video transcoding parameters and video source types. Although, the computing resources of different transcoding platforms and services constantly increase, accurate and fast transcoding time prediction and scheduling is still crucial. We propose in this paper a novel method called fast video transcoding time prediction and scheduling (FastTTPS) of x264 encoded videos based on three phases: (i) transcoding data engineering, (ii) transcoding time prediction, and (iii) transcoding scheduling. The first phase is responsible for video sequence selection, segmentation and feature data collection required for predicting the transcoding time. The second phase develops an artificial neural network (ANN) model for segment transcoding time prediction based on transcoding parameters and derived video complexity features. The third phase compares a number of parallel schedulers to map the predicted transcoding segments on the underlying high-performance computing resources. Experimental results show that our predictive ANN model minimizes the transcoding mean absolute error (MAE) and mean square error (MSE) by up to 1.7 and 26.8, respectively. In terms of scheduling, our method reduces the transcoding time by up to 38% using a Max–Min algorithm compared to the actual transcoding time without prediction information.

Funder

Österreichische Forschungsförderungsgesellschaft

University of Klagenfurt

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Reference65 articles.

1. Cisco annual internet report (2018–2023). Technical report. Cisco, San Jose (2020)

2. Zabrovskiy, A., Feldmann, C., Timmerer, C.: Multi-Codec DASH Dataset. In: Proceedings of the 9th ACM Multimedia Systems Conference, MMSys ’18. ACM, New York, pp. 438–443 (2018)

3. Sodagar, I.: The MPEG-DASH standard for multimedia streaming over the internet. IEEE MultiMedia 18(4), 62–67 (2011)

4. HTTP Live Streaming draft-pantos-http-live-streaming-20. Internet-draft, Apple Inc. (2016)

5. Zabrovskiy, A., Petrov, E., Kuzmin, E., Timmerer, C.: Evaluation of the performance of adaptive HTTP streaming systems. CoRR. arXiv:1710.02459 (2017)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transcoding V-PCC Point Cloud Streams in Real-time;ACM Transactions on Multimedia Computing, Communications, and Applications;2024-08

2. Just-in-Time Transcoding of 360° Video Streams;Proceedings of the ACM Multimedia Systems Conference 2024 on ZZZ;2024-04-15

3. Antifreeze: High-Quality Adaptive Live Streaming with Real-time Transcoder;2023 IEEE 48th Conference on Local Computer Networks (LCN);2023-10-02

4. To transcode or not? A machine learning based edge video caching and transcoding strategy;Computers and Electrical Engineering;2023-07

5. RABBIT: Live Transcoding of V-PCC Point Cloud Streams;Proceedings of the 14th Conference on ACM Multimedia Systems;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3