Application of Modified Couple-Stress Theory to Nonlinear Vibration Analysis of Nanobeam with Different Boundary Conditions

Author:

Togun NeclaORCID,Bağdatli Süleyman M.

Abstract

Abstract Purpose In the present study, the nonlinear vibration analysis of a nanoscale beam with different boundary conditions named as simply supported, clamped-clamped, clamped-simple and clamped-free are investigated numerically. Methods Nanoscale beam is considered as Euler-Bernoulli beam model having size-dependent. This non-classical nanobeam model has a size dependent incorporated with the material length scale parameter. The equation of motion of the system and the related boundary conditions are derived using the modified couple stress theory and employing Hamilton’s principle. Multiple scale method is used to obtain the approximate analytical solution. Result Numerical results by considering the effect of the ratio of beam height to the internal material length scale parameter, h/l and with and without the Poisson effect, υ are graphically presented and tabulated. Conclusion We remark that small size effect and poisson effect have a considerable effect on the linear fundamental frequency and the vibration amplitude. In order to show the accuracy of the results obtained, comparison study is also performed with existing studies in the literature.

Funder

Gaziantep University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3