Skip to main content

Advertisement

Log in

Decreased retinal vascular density is associated with cognitive impairment in CADASIL: an optical coherence tomography angiography study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to assess alterations in retinal vascular density in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) patients using optical coherence tomography angiography (OCTA) and investigate their association with MRI and cognitive features.

Methods

Twenty-five patients with CADASIL and forty healthy controls were evaluated by Cirrus HD-OCT 5000 with AngioPlex OCTA to determine changes in macular retinal vasculature. Retinal vasculature parameters between two groups were compared. The MRI lesion burden and neuropsychological scales were also examined in patients. The association between OCTA parameters and MRI/cognitive features was evaluated using partial Spearman rank correlation.

Results

The vessel density and perfusion density of whole image in macular region (vessel density: t =  − 2.834, p = 0.005; perfusion density: t =  − 2.691, p = 0.007) were significantly decreased in patients with CADASIL. Moreover, vessel density of whole image in macular region was negatively associated with Fazekas scores (ρ =  − 0.457; p = 0.025) and the number of lacunar infractions (ρ =  − 0.425, p = 0.038) after adjustment for age. Decreased macular vessel density and perfusion density of whole image were also associated with MoCA scores (vessel density: ρ = 0.542, p = 0.006; perfusion density: ρ = 0.478, p = 0.018) and other domain-specific neuropsychological tests (p < 0.05) after adjustment for age.

Conclusion

Decreased retinal vascular density was associated with increased MRI lesion burden and cognitive impairment in patients with CADASIL. Our findings suggest that the degree of retinal vascular involvement, as demonstrated by OCTA, may be consistent with the severity of MRI lesions and the degree of cognitive impairment in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The raw data supporting the conclusions of this manuscript will be made available by the corresponding authors, without undue reservation, to any qualified researcher.

References

  1. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, Alamowitch S, Domenga V, Cécillion M, Marechal E, Maciazek J, Vayssiere C, Cruaud C, Cabanis EA, Ruchoux MM, Weissenbach J, Bach JF, Bousser MG, Tournier-Lasserve E (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383:707–710. https://doi.org/10.1038/383707a0

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Yamamoto Y, Craggs LJ, Watanabe A, Booth T, Attems J, Low RW, Oakley AE, Kalaria RN (2013) Brain microvascular accumulation and distribution of the NOTCH3 ectodomain and granular osmiophilic material in CADASIL. J Neuropathol Exp Neurol 72:416–431. https://doi.org/10.1097/NEN.0b013e31829020b5

    Article  PubMed  CAS  Google Scholar 

  3. Brice S, Jabouley A, Reyes S, Machado C, Rogan C, Dias-Gastellier N, Chabriat H, du Montcel ST (2020) Modeling the cognitive trajectory in CADASIL. J Alzheimer’s Dis : JAD 77:291–300. https://doi.org/10.3233/jad-200310

    Article  PubMed  Google Scholar 

  4. Roine S, Harju M, Kivelä TT, Pöyhönen M, Nikoskelainen E, Tuisku S, Kalimo H, Viitanen M, Summanen PA (2006) Ophthalmologic findings in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a cross-sectional study. Ophthalmology 113:1411–1417. https://doi.org/10.1016/j.ophtha.2006.03.030

    Article  PubMed  Google Scholar 

  5. Patton N, Aslam T, Macgillivray T, Pattie A, Deary IJ, Dhillon B (2005) Retinal vascular image analysis as a potential screening tool for cerebrovascular disease: a rationale based on homology between cerebral and retinal microvasculatures. J Anat 206:319–348. https://doi.org/10.1111/j.1469-7580.2005.00395.x

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parisi V, Pierelli F, Malandrini A, Carrera P, Olzi D, Gregori D, Restuccia R, Parisi L, Fattapposta F (2000) Visual electrophysiological responses in subjects with cerebral autosomal arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). Clin Neurophysiol 111:1582–1588

    Article  PubMed  CAS  Google Scholar 

  7. Parisi V, Pierelli F, Fattapposta F, Bianco F, Parisi L, Restuccia R, Malandrini A, Ferrari M, Carrera P (2003) Early visual function impairment in CADASIL. Neurology 60:2008–2010

    Article  PubMed  CAS  Google Scholar 

  8. Parisi V, Pierelli F, Coppola G, Restuccia R, Ferrazzoli D, Scassa C, Bianco F, Parisi L, Fattapposta F (2007) Reduction of optic nerve fiber layer thickness in CADASIL. Eur J Neurol 14:627–631

    Article  PubMed  CAS  Google Scholar 

  9. Haritoglou C, Rudolph G, Hoops JP, Opherk C, Kampik A, Dichgans M (2004) Retinal vascular abnormalities in CADASIL. Neurology 62:1202–1205. https://doi.org/10.1212/01.wnl.0000118296.16326.e1

    Article  PubMed  CAS  Google Scholar 

  10. Fang X-J, Yu M, Wu Y, Zhang Z-H, Wang W-W, Wang Z-X, Yuan Y (2017) Study of enhanced depth imaging optical coherence tomography in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Chin Med J 130:1042–1048. https://doi.org/10.4103/0366-6999.204935

    Article  PubMed  PubMed Central  Google Scholar 

  11. Liu Y, Wu Y, Xie S, Luan X-h, Yuan Y (2008) Retinal arterial abnormalities correlate with brain white matter lesions in cerebral autosomal dominant arteriopathy with subcortical infarcts and leucoencephalopathy. Clin Experiment Ophthalmol 36:532–536. https://doi.org/10.1111/j.1442-9071.2008.01825.x

    Article  PubMed  Google Scholar 

  12. de Carlo TE, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vitreous 1:5. https://doi.org/10.1186/s40942-015-0005-8

    Article  PubMed  PubMed Central  Google Scholar 

  13. Roberta F, Arturo C, Maurizio F (2022) Optical coherence tomography angiography of central serous chorioretinopathy: quantitative evaluation of the vascular pattern and capillary flow density. Graefe’s Arch Clin Exp Ophthalmol = Albrecht Von Graefes Archiv Fur Klinische Und Experimentelle Ophthalmologie 260:1015–1024. https://doi.org/10.1007/s00417-021-05306-w

    Article  Google Scholar 

  14. Carta A, Farci R, Galantuomo MS, Fossarello M (2022) X-linked retinoschisis: OCT-angiography in two brothers from a four-generation family with a p.Arg197Cys pathogenic variant in the gene. Eur J Ophthalmol 33:NP109-NP114. https://doi.org/10.1177/11206721221136315

  15. Farci R, Carta A, Cocco E, Frau J, Fossarello M, Diaz G (2020) Optical coherence tomography angiography in multiple sclerosis: a cross-sectional study. PLoS One 15:e0236090. https://doi.org/10.1371/journal.pone.0236090

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wang X, Wei Q, Wu X, Cao S, Chen C, Zhang J, Yan Y, Geng Z, Tian Y, Wang K (2021) The vessel density of the superficial retinal capillary plexus as a new biomarker in cerebral small vessel disease: an optical coherence tomography angiography study. Neurol Sci: Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 42:3615–3624. https://doi.org/10.1007/s10072-021-05038-z

    Article  Google Scholar 

  17. Fu W, Zhou X, Wang M, Li P, Hou J, Gao P, Wang J (2022) Fundus changes evaluated by OCTA in patients with cerebral small vessel disease and their correlations: a cross-sectional study. Front Neurol 13:843198. https://doi.org/10.3389/fneur.2022.843198

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wu J, Zhang X, Azhati G, Li T, Xu G, Liu F (2020) Retinal microvascular attenuation in mental cognitive impairment and Alzheimer’s disease by optical coherence tomography angiography. Acta Ophthalmol (Copenh) 98:e781–e787. https://doi.org/10.1111/aos.14381

    Article  Google Scholar 

  19. Li Y, Wang X, Zhang Y, Zhang P, He C, Li R, Wang L, Zhang H, Zhang Y (2022) Retinal microvascular impairment in Parkinson’s disease with cognitive dysfunction. Parkinsonism Relat Disord 98:27–31. https://doi.org/10.1016/j.parkreldis.2022.03.008

    Article  PubMed  CAS  Google Scholar 

  20. Fickweiler W, Wolfson EA, Paniagua SM, Yu MG, Adam A, Bahnam V, Sampani K, Wu IH, Musen G, Aiello LP, Shah H, Sun JK, King GL (2021) Association of cognitive function and retinal neural and vascular structure in type 1 diabetes. J Clin Endocrinol Metab 106:1139–1149. https://doi.org/10.1210/clinem/dgaa921

    Article  PubMed  Google Scholar 

  21. Yang K, Cui L, Chen X, Yang C, Zheng J, Zhu X, Xiao Y, Su B, Li C, Shi K, Lu F, Qu J, Li M (2022) Decreased vessel density in retinal capillary plexus and thinner ganglion cell complex associated with cognitive impairment. Front Aging Neurosci 14:872466. https://doi.org/10.3389/fnagi.2022.872466

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yang K, Shen B, Li D-K, Wang Y, Zhao J, Zhao J, Yu W-B, Liu Z-Y, Tang Y-L, Liu F-T, Yu H, Wang J, Guo Q-H, Wu J-J (2018) Cognitive characteristics in Chinese non-demented PD patients based on gender difference. Transl Neurodegener 7:16. https://doi.org/10.1186/s40035-018-0120-1

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, Lindley RI, O’Brien JT, Barkhof F, Benavente OR, Black SE, Brayne C, Breteler M, Chabriat H, Decarli C, de Leeuw F-E, Doubal F, Duering M, Fox NC, Greenberg S, Hachinski V, Kilimann I, Mok V, Rv O, Pantoni L, Speck O, Stephan BCM, Teipel S, Viswanathan A, Werring D, Chen C, Smith C, van Buchem M, Norrving B, Gorelick PB, Dichgans M (2013) Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 12:822–838. https://doi.org/10.1016/S1474-4422(13)70124-8

    Article  PubMed  PubMed Central  Google Scholar 

  24. Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol 149:351–356. https://doi.org/10.2214/ajr.149.2.351

    Article  PubMed  CAS  Google Scholar 

  25. Ling C, Zhang Z, Wu Y, Fang X, Kong Q, Zhang W, Wang Z, Yang Q, Yuan Y (2019) Reduced venous oxygen saturation associates with increased dependence of patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: a 7.0-T magnetic resonance imaging study. Stroke 50:3128–3134. https://doi.org/10.1161/strokeaha.119.026376

    Article  PubMed  Google Scholar 

  26. Garcia-Medina JJ, Rubio-Velazquez E, Lopez-Bernal MD, Parraga-Muñoz D, Perez-Martinez A, Pinazo-Duran MD, Del-Rio-Vellosillo M (2020) Optical coherence tomography angiography of macula and optic nerve in autism spectrum disorder: a pilot study. J Clin Med 9:3123. https://doi.org/10.3390/jcm9103123

  27. Nelis P, Kleffner I, Burg MC, Clemens CR, Alnawaiseh M, Motte J, Marziniak M, Eter N, Alten F (2018) OCT-angiography reveals reduced vessel density in the deep retinal plexus of CADASIL patients. Sci Rep 8:8148. https://doi.org/10.1038/s41598-018-26475-5

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  28. Tsokolas G, Tsaousis KT, Diakonis VF, Matsou A, Tyradellis S (2020) Optical coherence tomography angiography in neurodegenerative diseases: a review. Eye and brain 12:73–87. https://doi.org/10.2147/eb.S193026

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sun C, Wu Y, Ling C, Xie Z, Sun Y, Xie Z, Li Z, Fang X, Kong Q, An J, Wang B, Zhuo Y, Zhang W, Wang Z, Yuan Y, Zhang Z (2022) Reduced blood flow velocity in lenticulostriate arteries of patients with CADASIL assessed by PC-MRA at 7T. J Neurol Neurosurg Psychiatry 93:451–452. https://doi.org/10.1136/jnnp-2021-326258

    Article  PubMed  Google Scholar 

  30. Yu D-Y, Cringle SJ, Yu PK, Balaratnasingam C, Mehnert A, Sarunic MV, An D, Su E-N (2019) Retinal capillary perfusion: spatial and temporal heterogeneity. Prog Retin Eye Res 70:23–54. https://doi.org/10.1016/j.preteyeres.2019.01.001

    Article  PubMed  Google Scholar 

  31. Wei W, Li Y, Xie Z, Deegan AJ, Wang RK (2019) Spatial and temporal heterogeneities of capillary hemodynamics and its functional coupling during neural activation. IEEE Trans Med Imaging 38:1295–1303. https://doi.org/10.1109/TMI.2018.2883244

    Article  PubMed  Google Scholar 

  32. Chan G, Balaratnasingam C, Yu PK, Morgan WH, McAllister IL, Cringle SJ, Yu D-Y (2013) Quantitative changes in perifoveal capillary networks in patients with vascular comorbidities. Invest Ophthalmol Vis Sci 54:5175–5185. https://doi.org/10.1167/iovs.13-11945

    Article  PubMed  Google Scholar 

  33. Lin C-W, Yang Z-W, Chen C-H, Cheng Y-W, Tang S-C, Jeng J-S (2022) Reduced macular vessel density and inner retinal thickness correlate with the severity of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL). PLoS One 17:e0268572. https://doi.org/10.1371/journal.pone.0268572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Yoon SP, Grewal DS, Thompson AC, Polascik BW, Dunn C, Burke JR, Fekrat S (2019) Retinal microvascular and neurodegenerative changes in Alzheimer’s disease and mild cognitive impairment compared with control participants. Ophthalmol Retina 3:489–499. https://doi.org/10.1016/j.oret.2019.02.002

    Article  PubMed  PubMed Central  Google Scholar 

  35. Li Z-B, Lin Z-J, Li N, Yu H, Wu Y-L, Shen X (2021) Evaluation of retinal and choroidal changes in patients with Alzheimer’s type dementia using optical coherence tomography angiography. Int J Ophthalmol 14:860–868. https://doi.org/10.18240/ijo.2021.06.11

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bulut M, Kurtuluş F, Gözkaya O, Erol MK, Cengiz A, Akıdan M, Yaman A (2018) Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol 102:233–237. https://doi.org/10.1136/bjophthalmol-2017-310476

    Article  PubMed  Google Scholar 

  37. Ban S, Wang H, Wang M, Xu S, Qin Z, Su J, Du X, Liu J-R (2019) Diffuse tract damage in CADASIL is correlated with global cognitive impairment. Eur Neurol 81:294–301. https://doi.org/10.1159/000501612

    Article  PubMed  Google Scholar 

  38. Taniguchi A, Shindo A, Tabei KI, Onodera O, Ando Y, Urabe T, Kimura K, Kitagawa K, Miyamoto Y, Takegami M, Ihara M, Mizuta I, Mizuno T, Tomimoto H (2022) Imaging characteristics for predicting cognitive impairment in patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Front Aging Neurosci 14:876437. https://doi.org/10.3389/fnagi.2022.876437

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Yue Wu and Zhixin Li (Institute of Biophysics, Chinese Academy of Sciences) for their contribution to 7.0T MRI data acquisition and Yadi Zhang and Xiaopeng Gu (Department of Ophthalmology, Peking University First Hospital) for their contribution to OCTA data acquisition. We appreciate the support of Weili Yang (Department of Neurology, Peking University First Hospital) for administrative assistance.

Funding

This work was supported by the National Natural Science Foundation of China (82101355, 82271323, and 82171059) and the scientific research seed fund of the Peking University first hospital (2021SF06).

Author information

Authors and Affiliations

Authors

Contributions

Yu Guo: conceptualization, formal analysis, and writing—original draft. Jianchen Hao: conceptualization, date curation, methodology, review, and editing. Ruilin Zhu: date curation methodology. Li Bai, Yong Shan, Yunchuang Sun, and Fan Li: date curation. Wei Zhang and Zhaoxia Wang: study design. Chen Ling: conceptualization, data curation, funding acquisition, writing, and editing. Liu Yang and Yun Yuan: funding acquisition, supervision, review, and editing. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Liu Yang, Yun Yuan or Chen Ling.

Ethics declarations

Ethical approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Institutional Review Board and Ethics Committee at Peking University First Hospital.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 6712 KB)

Supplementary file2 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Hao, J., Zhu, R. et al. Decreased retinal vascular density is associated with cognitive impairment in CADASIL: an optical coherence tomography angiography study. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07390-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07390-2

Keywords

Navigation