Skip to main content

Advertisement

Log in

Meta-analysis of the relationship between the number and location of perivascular spaces in the brain and cognitive function

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Cerebral perivascular spaces are part of the cerebral microvascular structure and play a role in lymphatic drainage and the removal of waste products from the brain. Relationships of the number and location of such spaces with cognition are unclear.

Objective

To meta-analyze available data on potential associations of severity and location of perivascular spaces with cognitive performance.

Methods

We searched PubMed, EMBASE, Web of Science and the Cochrane Central Registry of Controlled Trials for relevant studies published between January 2000 and July 2023. Performance on different cognitive domains was compared to the severity of perivascular spaces in different brain regions using comprehensive meta-analysis. When studies report unadjusted and adjusted means, we use adjusted means for meta-analysis. The study protocol is registered in the PROSPERO database (CRD42023443460).

Results

We meta-analyzed data from 26 cross-sectional studies and two longitudinal studies involving 7908 participants. In most studies perivascular spaces was using a visual rating scale. A higher number of basal ganglia perivascular spaces was linked to lower general intelligence and attention. Moreover, increased centrum semiovale perivascular spaces were associated with worse general intelligence, executive function, language, and memory. Conversely, higher hippocampus perivascular spaces were associated with enhanced memory and executive function. Subgroup analyses revealed variations in associations among different disease conditions.

Conclusions

A higher quantity of perivascular spaces in the brain is correlated with impaired cognitive function. The location of these perivascular spaces and the underlying disease conditions may influence the specific cognitive domains that are affected.

Systematic review registration

The study protocol has been registered in the PROSPERO database (CRD42023443460).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J (2019) The glymphatic system and waste clearance with brain aging: a review. Gerontology 65(2):106–119. https://doi.org/10.1159/000490349

    Article  PubMed  Google Scholar 

  2. Rouhl RPW, van Oostenbrugge RJ, Knottnerus ILH, Staals JEA, Lodder J (2008) Virchow-Robin spaces relate to cerebral small vessel disease severity. J Neurol 255(5):692–696. https://doi.org/10.1007/s00415-008-0777-y

    Article  CAS  PubMed  Google Scholar 

  3. Zhu YC, Tzourio C, Soumaré A, Mazoyer B, Dufouil C, Chabriat H (2010) Severity of dilated Virchow-Robin spaces is associated with age, blood pressure, and MRI markers of small vessel disease: a population-based study. Stroke 41(11):2483–2490. https://doi.org/10.1161/STROKEAHA.110.591586

    Article  PubMed  Google Scholar 

  4. Maclullich AMJ, Wardlaw JM, Ferguson KJ, Starr JM, Seckl JR, Deary IJ (2004) Enlarged perivascular spaces are associated with cognitive function in healthy elderly men. J Neurol Neurosurg Psychiatry 75(11):1519–1523. https://doi.org/10.1136/jnnp.2003.030858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Liu XY, Ma GY, Wang S, Gao Q, Guo C, Wei Q, Zhou X, Chen LP (2022) Perivascular space is associated with brain atrophy in patients with multiple sclerosis. Quant Imag Med Surg 12(2):1004–1019. https://doi.org/10.21037/qims-21-705

    Article  CAS  Google Scholar 

  6. Granberg T, Moridi T, Brand JS, Neumann S, Hlavica M, Piehl F, Ineichen BV (2020) Enlarged perivascular spaces in multiple sclerosis on magnetic resonance imaging: a systematic review and meta-analysis. J Neurol 267(11):3199–3212. https://doi.org/10.1007/s00415-020-09971-5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, Xiao M (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Aβ accumulation and memory deficits. Mol Neurodegener 2(10):58. https://doi.org/10.1186/s13024-015-0056-1

    Article  CAS  Google Scholar 

  8. Zhu YC, Dufouil C, Soumaré A, Mazoyer B, Chabriat H, Tzourio C (2010) High degree of dilated Virchow-Robin spaces on MRI is associated with increased risk of dementia. J Alzheimers Dis JAD 22(2):663–672. https://doi.org/10.3233/JAD-2010-100378

    Article  PubMed  Google Scholar 

  9. Passiak BS, Liu D, Kresge HA et al (2019) Perivascular spaces contribute to cognition beyond other small vessel disease markers. Neurology 92(12):e1309–e1321. https://doi.org/10.1212/WNL.0000000000007124

    Article  PubMed  PubMed Central  Google Scholar 

  10. Paradise M, Crawford JD, Lam BCP et al (2021) Association of dilated perivascular spaces with cognitive decline and incident dementia. Neurology 96(11):e1501–e1511. https://doi.org/10.1212/WNL.0000000000011537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sim JE, Park MS, Shin HY et al (2020) Correlation between hippocampal enlarged perivascular spaces and cognition in non-dementic elderly population. Front Neurol 11:542511. https://doi.org/10.3389/fneur.2020.542511

    Article  PubMed  PubMed Central  Google Scholar 

  12. Valdés Hernández MDC, Ballerini L, Glatz A et al (2020) Perivascular spaces in the centrum semiovale at the beginning of the 8th decade of life: effect on cognition and associations with mineral deposition. Brain Imaging Behav 14(5):1865–1875. https://doi.org/10.1007/s11682-019-00128-1

    Article  PubMed  Google Scholar 

  13. Lin CY, Jhan SR, Lee WJ et al (2021) Imaging markers of subcortical vascular dementia in patients with multiple-lobar cerebral microbleeds. Front Neurol 12:747536. https://doi.org/10.3389/fneur.2021.747536

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hilal S, Tan CS, Adams HHH et al (2018) Enlarged perivascular spaces and cognition: a meta-analysis of 5 population-based studies. Neurology 91(9):e832–e842. https://doi.org/10.1212/WNL.0000000000006079

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jie W, Lin G, Liu Z et al (2020) The relationship between enlarged perivascular spaces and cognitive function: a meta-analysis of observational studies. Front Pharmacol 11:715. https://doi.org/10.3389/fphar.2020.00715

    Article  PubMed  PubMed Central  Google Scholar 

  16. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. https://doi.org/10.1136/bmj.n71

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rostom A, Dubé C, Cranney A et al (2004) Celiac disease. Evid Rep Technol Assess (Summ) 104:1–6

    Google Scholar 

  18. Hu J, Dong Y, Chen X et al (2015) Prevalence of suicide attempts among Chinese adolescents: a meta-analysis of cross-sectional studies. Compr Psychiatry 61:78–89. https://doi.org/10.1016/j.comppsych.2015.05.001

    Article  PubMed  Google Scholar 

  19. Peterson RA, Brown SP (2005) On the use of beta coefficients in meta-analysis. J Appl Psychol 90(1):175–181. https://doi.org/10.1037/0021-9010.90.1.175

    Article  PubMed  Google Scholar 

  20. Rosenthal R (1991) Meta-analytic procedures for social research. Sage, Newbury Park. https://us.sagepub.com/en-us/nam/meta-analytic-procedures-for-social-research/book3523. Accessed 30 Aug 2023

  21. Jp H, Dg A, Pc G et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343. https://doi.org/10.1136/bmj.d5928

  22. Jiménez-Balado J, Riba-Llena I, Garde E et al (2018) Prevalence of hippocampal enlarged perivascular spaces in a sample of patients with hypertension and their relation with vascular risk factors and cognitive function. J Neurol Neurosurg Psychiatry 89(6):651–656. https://doi.org/10.1136/jnnp-2017-316724

    Article  PubMed  Google Scholar 

  23. Huang S, Zhang M, Huang KK et al (2020) Analysis of the relationship between enlarged perivascular space and patients with mild cognitive impairment. Chin J Cerebrovasc Dis 17(12):726–733. https://doi.org/10.3969/j.issn.1672-5921.2020.12.003

    Article  Google Scholar 

  24. Li X, Shen M, Jin Y et al (2021) The effect of cerebral small vessel disease on the subtypes of mild cognitive impairment. Front Psychiatry 12:685965. https://doi.org/10.3389/fpsyt.2021.685965

    Article  PubMed  PubMed Central  Google Scholar 

  25. Libecap TJ, Zachariou V, Bauer CE et al (2022) Enlarged perivascular spaces are negatively associated with Montreal Cognitive Assessment scores in older adults. Front Neurol 13:888511. https://doi.org/10.3389/fneur.2022.888511

  26. Zdanovskis N, Platkājis A, Kostiks A et al (2022) Combined score of perivascular space dilatation and white matter hyperintensities in patients with normal cognition, mild cognitive impairment, and dementia. Med Kaunas Lith 58(7):887. https://doi.org/10.3390/medicina58070887

    Article  Google Scholar 

  27. Seki M, Yoshizawa H, Hosoya M, Kitagawa K (2022) Neuropsychological profile of early cognitive impairment in cerebral small vessel disease. Cerebrovasc Dis Basel Switz 51(5):600–607. https://doi.org/10.1159/000522438

    Article  CAS  Google Scholar 

  28. Schoemaker D, Zuluaga Y, Viswanathan A et al (2020) The INECO Frontal screening for the evaluation of executive dysfunction in cerebral small vessel disease: evidence from quantitative MRI in a Cadasil Cohort from Colombia - corrigendum. J Int Neuropsychol Soc 26(10):1052–1052. https://doi.org/10.1017/S1355617720000843

    Article  PubMed  Google Scholar 

  29. Choi EY, Park YW, Lee M et al (2021) Magnetic resonance imaging-visible perivascular spaces in the basal ganglia are associated with the diabetic retinopathy stage and cognitive decline in patients with type 2 diabetes. Front Aging Neurosci 13:666495–666495. https://doi.org/10.3389/fnagi.2021.666495

    Article  PubMed  PubMed Central  Google Scholar 

  30. Si XL, Gu LY, Song Z et al (2020) Different perivascular space burdens in idiopathic rapid eye movement sleep behavior disorder and Parkinson’s disease. Front Aging Neurosci 12:580853. https://doi.org/10.3389/fnagi.2020.580853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fan Y, Xu Y, Shen M, Guo H, Zhang Z (2021) Total cerebral small vessel disease burden on MRI correlates with cognitive impairment in outpatients with amnestic disorders. Front Neurol 12:747115–747115. https://doi.org/10.3389/fneur.2021.747115

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huijts M, Duits A, Staals J, Kroon AA, de Leeuw PW, van Oostenbrugge RJ (2014) Basal ganglia enlarged perivascular spaces are linked to cognitive function in patients with cerebral small vessel disease. Curr Neurovasc Res 11(2):136–141. https://doi.org/10.2174/1567202611666140310102248

    Article  PubMed  Google Scholar 

  33. Ying YQ, Wang YQ, Xia YW et al (2021) The analysis of association between imaging biomarkers of cerebral small vessel disease and cognitive impairment: a Shanghai elderly community-based cohort. Chin J Contemp Neurol Neurosurg 21(10):843–852. https://doi.org/10.3969/j.issn.1672-6731.2021.10.004

    Article  Google Scholar 

  34. Jeong SH, Cha J, Park M, et al (2022) Association of enlarged perivascular spaces with amyloid burden and cognitive decline in Alzheimer disease continuum. Neurology. Published online August 19, 2022. https://doi.org/10.1212/WNL.0000000000200989

  35. Low A, Mak E, Malpetti M et al (2021) In vivo neuroinflammation and cerebral small vessel disease in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 92(1):45–52. https://doi.org/10.1136/jnnp-2020-323894

    Article  Google Scholar 

  36. Yao M, Hervé D, Jouvent E et al (2014) Dilated perivascular spaces in small-vessel disease: a study in CADASIL. Cerebrovasc Dis Basel Switz 37(3):155–163. https://doi.org/10.1159/000356982

    Article  Google Scholar 

  37. Wang XX, Cao QC, Teng JF et al (2022) MRI-visible enlarged perivascular spaces: imaging marker to predict cognitive impairment in older chronic insomnia patients. Eur Radiol 32(8):5446–5457. https://doi.org/10.1007/s00330-022-08649-y

    Article  CAS  PubMed  Google Scholar 

  38. Wan Y, Hu W, Gan J et al (2019) Exploring the association between Cerebral small-vessel diseases and motor symptoms in Parkinson’s disease. Brain Behav 9(4):e01219. https://doi.org/10.1002/brb3.1219

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen H, Wan H, Zhang M et al (2021) Cerebral small vessel disease may worsen motor function, cognition, and mood in Parkinson’s disease. Parkinsonism Relat Disord 83:86–92. https://doi.org/10.1016/j.parkreldis.2020.12.025

    Article  PubMed  Google Scholar 

  40. Tao W, Liu J, Ye C et al (2022) Relationships between cerebral small vessel diseases markers and cognitive performance in stroke-free patients with atrial fibrillation. Front Aging Neurosci 14:1045910. https://doi.org/10.3389/fnagi.2022.1045910

    Article  PubMed  Google Scholar 

  41. Li XY, Xie JJ, Wang JH et al (2023) Perivascular spaces relate to the course and cognition of Huntington’s disease. Transl Neurodegener 12(1):30. https://doi.org/10.1186/s40035-023-00359-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wei SQ, Meng XY, Yan WJ et al (2022) Correlation of enlarged perivascular spaces with post-stroke cognitive impairment in patients with acute mild stroke. Chin J Neuromed 21(01):20–27. https://doi.org/10.3760/cma.j.cn115354-20210926-00631

    Article  Google Scholar 

  43. Hou M, Hou X, Qiu Y et al (2022) Characteristics of cognitive impairment and their relationship with total cerebral small vascular disease score in Parkinson’s disease. Front Aging Neurosci 14:884506. https://doi.org/10.3389/fnagi.2022.884506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bown CW, Khan OA, Liu D et al (2023) Enlarged perivascular space burden associations with arterial stiffness and cognition. Neurobiol Aging 124:85–97. https://doi.org/10.1016/j.neurobiolaging.2022.10.014

    Article  PubMed  Google Scholar 

  45. Wang ML, Zou QQ, Sun Z et al (2022) Associations of MRI-visible perivascular spaces with longitudinal cognitive decline across the Alzheimer’s disease spectrum. Alzheimers Res Ther 14(1):185. https://doi.org/10.1186/s13195-022-01136-y

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rosenthal R (1979) The “file drawer problem” and tolerance for null results. Psychol Bull 86(3):638–641

    Article  Google Scholar 

  47. Bakker EN, Bacskai BJ, Arbel-Ornath M, Aldea R, Bedussi B, Morris AW, Weller RO, Carare RO (2016) Lymphatic clearance of the brain: perivascular, paravascular and significance for neurodegenerative diseases. Cell Mol Neurobiol 36(2):181–194. https://doi.org/10.1007/s10571-015-0273-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rasmussen MK, Mestre H, Nedergaard M (2018) The glymphatic pathway in neurological disorders. Lancet Neurol 17(11):1016–1024. https://doi.org/10.1016/S1474-4422(18)30318-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Da Mesquita S, Louveau A, Vaccari A, Smirnov I, Cornelison RC, Kingsmore KM, Contarino C, Onengut-Gumuscu S, Farber E, Raper D, Viar KE, Powell RD, Baker W, Dabhi N, Bai R, Cao R, Hu S, Rich SS, Munson JM, Lopes MB, … Kipnis J (2018) Functional aspects of meningeal lymphatics in ageing and Alzheimer's disease. Nature 560(7717):185–191. https://doi.org/10.1038/s41586-018-0368-8

  50. Ishida K, Yamada K, Nishiyama R, Hashimoto T, Nishida I, Abe Y, Yasui M, Iwatsubo T (2022) Glymphatic system clears extracellular tau and protects from tau aggregation and neurodegeneration. J Exp Med 219(3):e20211275. https://doi.org/10.1084/jem.20211275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, Nedergaard M (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 4(147):147ra111. https://doi.org/10.1126/scitranslmed.3003748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Nedergaard M, Goldman SA (2020) Glymphatic failure as a final common pathway to dementia. Science (New York, N.Y.) 370(6512):50–56. https://doi.org/10.1126/science.abb8739

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Jucker M, Walker LC (2013) Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501(7465):45–51. https://doi.org/10.1038/nature12481

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shams S, Martola J, Charidimou A et al (2017) Topography and determinants of magnetic resonance imaging (MRI)-visible perivascular spaces in a large memory clinic cohort. J Am Heart Assoc 6(9):e006279. https://doi.org/10.1161/JAHA.117.006279

    Article  PubMed  PubMed Central  Google Scholar 

  55. Riba-Llena I, Jiménez-Balado J, Castañé X et al (2018) Arterial stiffness is associated with Basal Ganglia enlarged perivascular spaces and cerebral small vessel disease load. Stroke 49(5):1279–1281. https://doi.org/10.1161/STROKEAHA.118.020163

    Article  PubMed  Google Scholar 

  56. Charidimou A, Hong YT, Jäger HR et al (2015) White matter perivascular spaces on magnetic resonance imaging: marker of cerebrovascular amyloid burden? Stroke 46(6):1707–1709. https://doi.org/10.1161/STROKEAHA.115.009090

    Article  PubMed  Google Scholar 

  57. Hansen TP, Cain J, Thomas O, Jackson A (2015) Dilated perivascular spaces in the basal ganglia are a biomarker of small-vessel disease in a very elderly population with dementia. AJNR Am J Neuroradiol 36(5):893–898. https://doi.org/10.3174/ajnr.A4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bostan AC, Strick PL (2018) The basal ganglia and the cerebellum: nodes in an integrated network. Nat Rev Neurosci 19(6):338–350. https://doi.org/10.1038/s41583-018-0002-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Alexander GE (1994) Basal ganglia-thalamocortical circuits: their role in control of movements. J Clin Neurophysiol Off Publ Am Electroencephalogr Soc 11(4):420–431

    CAS  Google Scholar 

  60. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381. https://doi.org/10.1146/annurev.ne.09.030186.002041

    Article  CAS  PubMed  Google Scholar 

  61. Pearlson GD, Rabins PV, Burns A (1991) Centrum semiovale white matter CT changes associated with normal ageing, Alzheimer’s disease and late life depression with and without reversible dementia. Psychol Med 21(2):321–328. https://doi.org/10.1017/s0033291700020420

    Article  CAS  PubMed  Google Scholar 

  62. Vataja R, Pohjasvaara T, Mäntylä R et al (2003) MRI correlates of executive dysfunction in patients with ischaemic stroke. Eur J Neurol 10(6):625–631. https://doi.org/10.1046/j.1468-1331.2003.00676.x

    Article  CAS  PubMed  Google Scholar 

  63. Deary IJ, Bastin ME, Pattie A et al (2006) White matter integrity and cognition in childhood and old age. Neurology 66(4):505–512. https://doi.org/10.1212/01.wnl.0000199954.81900.e2

    Article  CAS  PubMed  Google Scholar 

  64. Huang LA, Ling XY, Li C, Zhang SJ, Chi GB, Xu AD (2014) Study of white matter at the centrum semiovale level with magnetic resonance spectroscopy and diffusion tensor imaging in cerebral small vessel disease. Genet Mol Res GMR 13(2):2683–2690. https://doi.org/10.4238/2014.April.8.11

    Article  CAS  PubMed  Google Scholar 

  65. Yao M, Zhu YC, Soumaré A et al (2014) Hippocampal perivascular spaces are related to aging and blood pressure but not to cognition. Neurobiol Aging 35(9):2118–2125. https://doi.org/10.1016/j.neurobiolaging.2014.03.021

    Article  PubMed  Google Scholar 

  66. Sekimitsu S, Shweikh Y, Shareef S, Zhao Y, Elze T, Segrè A, Wiggs J, Zebardast N (2023) Association of retinal optical coherence tomography metrics and polygenic risk scores with cognitive function and future cognitive decline. Br J Ophthalmol bjo-2022–322762. Advance online publication. https://doi.org/10.1136/bjo-2022-322762

Download references

Funding

This work is financed by the Key Research and Development Project of the Sichuan Science and Technology Department (2023YFS0268).

Author information

Authors and Affiliations

Authors

Contributions

LL wrote the main manuscript. YMX provided the study idea. LL and LDT conducted article literature search and data extraction. DX and LDT contributed to analyze and interpret the data. YMX and LDT made critical comments and revision for the manuscript. All authors reviewed and approved the final manuscript.

Corresponding author

Correspondence to Yanming Xu.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study formal consent is not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 21 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Tu, L., Shen, Q. et al. Meta-analysis of the relationship between the number and location of perivascular spaces in the brain and cognitive function. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07438-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07438-3

Keywords

Navigation