Skip to main content

Advertisement

Log in

Advances in using ultrasound to regulate the nervous system

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Ultrasound is a mechanical vibration with a frequency greater than 20 kHz. Due to its high spatial resolution, good directionality, and convenient operation in neural regulation, it has recently received increasing attention from scientists. However, the mechanism by which ultrasound regulates the nervous system is still unclear. This article mainly explores the possible mechanisms of ultrasound’s mechanical effects, cavitation effects, thermal effects, and the rise of sonogenetics. In addition, the essence of action potential and its relationship with ultrasound were also discussed. Traditional theory treats nerve impulses as pure electrical signals, similar to cable theory. However, this theory cannot explain the phenomenon of inductance and cell membrane bulging out during the propagation of action potential. Therefore, the flexoelectric effect of cell membrane and soliton model reveal that action potential may also be a mechanical wave. Finally, we also elaborated the therapeutic effect of ultrasound on nervous system disease such as epilepsy, Parkinson’s disease, and Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

None.

References

  1. Fry FJ, Ades HW, Fry WJ (1958) Production of reversible changes in the central nervous system by Ultrasound. Science 127:83–84. https://doi.org/10.1126/science.127.3289.83

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Yoo S, Mittelstein DR, Hurt RC et al (2022) Focused ultrasound excites cortical neurons via mechanosensitive calcium accumulation and ion channel amplification. Nature Comm 13:493. https://doi.org/10.1038/s41467-022-28040-1

    Article  ADS  CAS  Google Scholar 

  3. Clennell B, Steward TGJ, Hanman K et al (2023) Ultrasound modulates neuronal potassium currents via ionotropic glutamate receptors. Brain Stimul 16:540–552. https://doi.org/10.1016/j.brs.2023.01.1674

    Article  PubMed  Google Scholar 

  4. Legon W, Sato TF, Opitz A et al (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci 17:322–329. https://doi.org/10.1038/nn.3620

    Article  PubMed  CAS  Google Scholar 

  5. Krasovitski B, Frenkel V, Shoham S et al (2011) Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci U S A 108:3258–3263. https://doi.org/10.1073/pnas.1015771108

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  6. O’brien WD Jr (2007) Ultrasound-biophysics mechanisms. Prog Biophys Mol Biol 93:212–255. https://doi.org/10.1016/j.pbiomolbio.2006.07.010

    Article  PubMed  Google Scholar 

  7. Plaksin M, Shoham S, Kimmel E (2014) Intramembrane cavitation as a predictive bio-piezoelectric mechanism for ultrasonic brain stimulation. Physical rev X 4:011004. https://doi.org/10.1523/eneuro.0136-15.2016

    Article  ADS  CAS  Google Scholar 

  8. Plaksin M, Kimmel E, Shoham S (2016) Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation. Eneuro 3:0136–0115. https://doi.org/10.1523/eneuro.0136-15.2016

    Article  CAS  Google Scholar 

  9. Huguenard JR, Mccormick DA (1992) Simulation of the currents involved in rhythmic oscillations in thalamic relay neurons. J Neurophysiol 68:1373–1383. https://doi.org/10.1152/jn.1992.68.4.1373

    Article  PubMed  CAS  Google Scholar 

  10. Dell’italia J, Sanguinetti JL, Monti MM et al (2022) Current state of potential mechanisms supporting low intensity focused ultrasound for neuromodulation. Front Human Neuroscience 16:872639. https://doi.org/10.3389/fnhum.2022.872639

    Article  Google Scholar 

  11. Yu K, Niu X, Krook-Magnuson E et al (2021) Intrinsic functional neuron-type selectivity of transcranial focused ultrasound neuromodulation. Nat Commun 12:2519. https://doi.org/10.1038/s41467-021-22743-7

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Yoon K, Lee W, Lee JE et al (2019) Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS One 14:e0224311. https://doi.org/10.1371/journal.pone.0224311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Panczykowski DM, EaI Monaco, Friedlander RM (2014) Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Neurosurgery 74:N8–N9. https://doi.org/10.1227/neu.0000000000000365

    Article  PubMed  Google Scholar 

  14. Legon W, Ai L, Bansal P et al (2018) Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp 39:1995–2006. https://doi.org/10.1002/hbm.23981

    Article  PubMed  PubMed Central  Google Scholar 

  15. Darrow DP, O’brien P, Richner TJ et al (2019) Reversible neuroinhibition by focused ultrasound is mediated by a thermal mechanism. Brain Stimul 12:1439–1447. https://doi.org/10.1016/j.brs.2019.07.015

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cole KS (1941) Rectification and inductance in the sound giant axon. J Gen Physiol 25:29–51. https://doi.org/10.1085/jgp.25.1.29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Cole KS, Baker RF (1941) Longitudinal impedance of the squid giant axon. J Gen Physiol 24:771–788. https://doi.org/10.1085/jgp.24.6.771

  18. Petrov AG (2002) Flexoelectricity of model and living membranes. Biochim Biophys Acta 1561:1–25. https://doi.org/10.1016/s0304-4157(01)00007-7

    Article  PubMed  CAS  Google Scholar 

  19. Ahmadpoor F, Sharma P (2015) Flexoelectricity in two-dimensional crystalline and biological membranes. Nanoscale 7:16555–16570. https://doi.org/10.1039/c5nr04722f

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Kovács T, Batta G, Zákány F et al (2017) The dipole potential correlates with lipid raft markers in the plasma membrane of living cells. J Lipid Res 58:1681–1691. https://doi.org/10.1194/jlr.M077339

    Article  PubMed  PubMed Central  Google Scholar 

  21. Wang L, Bose PS, Sigworth FJ (2006) Using cryo-EM to measure the dipole potential of a lipid membrane. Proc Natl Acad Sci U S A 103:18528–18533. https://doi.org/10.1073/pnas.0608714103

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  22. Yang Y, Mayer KM, Wickremasinghe NS et al (2008) Probing the lipid membrane dipole potential by atomic force microscopy. Biophys J 95:5193–5199. https://doi.org/10.1529/biophysj.108.136507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Shrivastava S, Schneider MF (2014) Evidence for two-dimensional solitary sound waves in a lipid controlled interface and its implications for biological signalling. J R Soc Interface 11:20140098. https://doi.org/10.1098/rsif.2014.0098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Evans EF (1972) The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J Physiol 226:263–287. https://doi.org/10.1113/jphysiol.1972.sp009984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Wang H, Wang J, Cai G et al (2020) A physical perspective to the inductive function of myelin-a missing piece of neuroscience. Front Neural Circuits 14:562005. https://doi.org/10.3389/fncir.2020.562005

    Article  PubMed  CAS  Google Scholar 

  26. Ye PP, Brown JR, Pauly KB (2016) Frequency dependence of ultrasound neurostimulation in the mouse brain. Ultrasound Med Biol 42:1512–1530. https://doi.org/10.1016/j.ultrasmedbio.2016.02.012

    Article  PubMed  PubMed Central  Google Scholar 

  27. King RL, Brown JR, Newsome WT et al (2013) Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med Biol 39:312–331. https://doi.org/10.1016/j.ultrasmedbio.2012.09.009

    Article  PubMed  Google Scholar 

  28. Iwasa K, Tasaki I, Gibbons RC (1980) Swelling of nerve fibers associated with action potentials. Science 210:338–339. https://doi.org/10.1126/science.7423196

    Article  ADS  PubMed  CAS  Google Scholar 

  29. Gonzalez-Perez A, Mosgaard LD, Budvytyte R et al (2016) Solitary electromechanical pulses in lobster neurons. Biophys Chem 216:51–59. https://doi.org/10.1016/j.bpc.2016.06.005

    Article  PubMed  CAS  Google Scholar 

  30. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544. https://doi.org/10.1113/jphysiol.1952.sp004764

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ranjan R, Chiamvimonvat N, Thakor NV et al (1998) Mechanism of anode break stimulation in the heart. Biophys J 74:1850–1863. https://doi.org/10.1016/s0006-3495(98)77895-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Lane BJ, Pliotas C (2023) Approaches for the modulation of mechanosensitive MscL channel pores. Front Chem 11:1162412. https://doi.org/10.3389/fchem.2023.1162412

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  33. Ye J, Tang S, Meng L et al (2018) Ultrasonic control of neural activity through activation of the mechanosensitive channel MscL. Nano Lett 18:4148–4155. https://doi.org/10.1021/acs.nanolett.8b00935

    Article  ADS  PubMed  CAS  Google Scholar 

  34. Gees M, Owsianik G, Nilius B et al (2012) TRP channels. Compr Physiol 2:563–608. https://doi.org/10.1002/cphy.c110026

    Article  PubMed  Google Scholar 

  35. Ibsen S, Tong A, Schutt C et al (2015) Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat Commun 6:8264. https://doi.org/10.1038/ncomms9264

    Article  ADS  PubMed  CAS  Google Scholar 

  36. Lesage F, Guillemare E, Fink M et al (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 15:1004–1011. https://doi.org/10.1002/j.1460-2075.1996.tb00437.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kubanek J, Shi J, Marsh J et al (2016) Ultrasound modulates ion channel currents. Sci Rep 6:24170. https://doi.org/10.1038/srep24170

  38. Ge J, Li W, Zhao Q et al (2015) Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527:64–69. https://doi.org/10.1038/nature15247

    Article  ADS  PubMed  CAS  Google Scholar 

  39. Qiu Z, Guo J, Kala S et al (2019) The mechanosensitive ion channel piezo1 significantly mediates in vitro ultrasonic stimulation of neurons. iScience 21:448–457. https://doi.org/10.1016/j.isci.2019.10.037

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Duque M, Lee-Kubli CA, Tufail Y et al (2022) Sonogenetic control of mammalian cells using exogenous transient receptor potential A1 channels. Nat Commun 13:600. https://doi.org/10.1038/s41467-022-28205-y

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  41. Liu T, Choi MH, Zhu J et al (2022) Sonogenetics: recent advances and future directions. Brain Stimul 15:1308–1317. https://doi.org/10.1016/j.brs.2022.09.002

    Article  PubMed  Google Scholar 

  42. Heimburg T, Jackson AD (2005) On soliton propagation in biomembranes and nerves. Proc Natl Acad Sci U S A 102:9790–9795. https://doi.org/10.1073/pnas.0503823102

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  43. Heimburg T (2012) The capacitance and electromechanical coupling of lipid membranes close to transitions: the effect of electrostriction. Biophys J 103:918–929. https://doi.org/10.1016/j.bpj.2012.07.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Wang T, Mužić T, Jackson AD et al (2018) The free energy of biomembrane and nerve excitation and the role of anesthetics. Biochim Biophys Acta Biomembr 1860:2145–2153. https://doi.org/10.1016/j.bbamem.2018.04.003

    Article  PubMed  CAS  Google Scholar 

  45. Heimburg T (2022) The thermodynamic soliton theory of the nervous impulse and possible medical implications. Prog Biophys Mol Biol 173:24–35. https://doi.org/10.1016/j.pbiomolbio.2022.05.007

    Article  PubMed  CAS  Google Scholar 

  46. Pita ML, Rubio JM, Murillo ML et al (1997) Chronic alcoholism decreases polyunsaturated fatty acid levels in human plasma, erythrocytes, and platelets–influence of chronic liver disease. Thromb Haemost 78:808–812. https://doi.org/10.1055/s-0038-1657633

    Article  PubMed  CAS  Google Scholar 

  47. Mostile G, Jankovic J (2010) Alcohol in essential tremor and other movement disorders. Mov Disord 25:2274–2284. https://doi.org/10.1002/mds.23240

    Article  PubMed  Google Scholar 

  48. Heimburg T, Jackson AD (2007) The thermodynamics of general anesthesia. Biophys J 92:3159–3165. https://doi.org/10.1529/biophysj.106.099754

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Berg RW, Stauning MT, Srensen JB et al (2017) Comment on ‘penetration of action potentials during collision in the median and lateral giant axons of invertebrates’. Physical Review X in press:028001. https://doi.org/10.1103/PhysRevX.7.028001

  50. Fillafer C, Paeger A, Schneider MF (2017) Collision of two action potentials in a single excitable cell. Biochim Biophys Acta Gen Subj 1861:3282–3286. https://doi.org/10.1016/j.bbagen.2017.09.020

    Article  PubMed  CAS  Google Scholar 

  51. Follmann R, Rosa E, Stein W (2015) Dynamics of signal propagation and collision in axons. Phys Rev E Stat Nonlin Soft Matter Phys 92:032707. https://doi.org/10.1103/PhysRevE.92.032707

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  52. Gonzalez-Perez A, Budvytyte R, Mosgaard LD et al (2014) Penetration of action potentials during collision in the median and lateral giant axons of invertebrates. Physical Rev X 4:https://doi.org/10.1103/PhysRevX.4.031047

  53. Shrivastava S, Kang KH, Schneider MF (2018) Collision and annihilation of nonlinear sound waves and action potentials in interfaces. J R Soc Interface 15:20170803. https://doi.org/10.1098/rsif.2017.0803

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Constans C, Mateo P, Tanter M et al (2018) Potential impact of thermal effects during ultrasonic neurostimulation: retrospective numerical estimation of temperature elevation in seven rodent setups. Phys Med Biol 63:025003. https://doi.org/10.1088/1361-6560/aaa15c

    Article  PubMed  CAS  Google Scholar 

  55. Burgoon PW, Boulant JA (2001) Temperature-sensitive properties of rat suprachiasmatic nucleus neurons. Am J Physiol Regul Integr Comp Physiol 281:R706-715. https://doi.org/10.1152/ajpregu.2001.281.3.R706

    Article  PubMed  CAS  Google Scholar 

  56. Hameroff S, Trakas M, Duffield C et al (2013) Transcranial ultrasound (TUS) effects on mental states: a pilot study. Brain Stimul 6:409–415. https://doi.org/10.1016/j.brs.2012.05.002

    Article  PubMed  Google Scholar 

  57. Sato T, Shapiro MG, Tsao DY (2018) Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98:1031–1041. https://doi.org/10.1016/j.neuron.2018.05.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Xu T, Lu X, Peng D et al (2020) Ultrasonic stimulation of the brain to enhance the release of dopamine - a potential novel treatment for Parkinson’s disease. Ultrason Sonochem 63:104955. https://doi.org/10.1016/j.ultsonch.2019.104955

    Article  PubMed  CAS  Google Scholar 

  59. Bond AE, Shah BB, Huss DS et al (2017) Safety and efficacy of focused ultrasound thalamotomy for patients with medication-refractory, tremor-dominant Parkinson disease: a randomized clinical trial. JAMA Neurol 74:1412–1418. https://doi.org/10.1001/jamaneurol.2017.3098

    Article  PubMed  PubMed Central  Google Scholar 

  60. Sharabi S, Daniels D, Last D et al (2019) Non-thermal focused ultrasound induced reversible reduction of essential tremor in a rat model. Brain Stimul 12:1–8. https://doi.org/10.1016/j.brs.2018.08.014

    Article  PubMed  Google Scholar 

  61. Li X, Yang H, Yan J et al (2019) Seizure control by low-intensity ultrasound in mice with temporal lobe epilepsy. Epilepsy Res 154:1–7. https://doi.org/10.1016/j.eplepsyres.2019.04.002

    Article  PubMed  Google Scholar 

  62. Min BK, Bystritsky A, Jung KI et al (2011) Focused ultrasound-mediated suppression of chemically-induced acute epileptic EEG activity. BMC Neurosci 12:23. https://doi.org/10.1186/1471-2202-12-23

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chu PC, Yu HY, Lee CC et al (2022) Pulsed-focused ultrasound provides long-term suppression of epileptiform bursts in the kainic acid-induced epilepsy Rat Model. Neurotherapeutics 19:1368–1380. https://doi.org/10.1007/s13311-022-01250-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Jung HH, Kim SJ, Roh D et al (2015) Bilateral thermal capsulotomy with MR-guided focused ultrasound for patients with treatment-refractory obsessive-compulsive disorder: a proof-of-concept study. Mol Psychiatry 20:1205–1211. https://doi.org/10.1038/mp.2014.154

    Article  PubMed  CAS  Google Scholar 

  65. Kim SJ, Roh D, Jung HH et al (2018) A study of novel bilateral thermal capsulotomy with focused ultrasound for treatment-refractory obsessive-compulsive disorder: 2-year follow-up. J Psychiatry Neurosci 43:327–337. https://doi.org/10.1503/jpn.170188

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sanguinetti JL, Hameroff S, Smith EE et al (2020) Transcranial focused ultrasound to the right prefrontal cortex improves mood and alters functional connectivity in humans. Front Hum Neurosci 14:52. https://doi.org/10.3389/fnhum.2020.00052

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zhang D, Li H, Sun J et al (2019) Antidepressant-like effect of low-intensity transcranial ultrasound stimulation. IEEE Trans Biomed Eng 66:411–420. https://doi.org/10.1109/tbme.2018.2845689

    Article  PubMed  Google Scholar 

  68. Anderson TA, Pacharinsak C, Vilches-Moure J et al (2023) Focused ultrasound-induced inhibition of peripheral nerve fibers in an animal model of acute pain. Reg Anesth Pain Med 2022–104060. https://doi.org/10.1136/rapm-2022-104060

  69. Meng Y, Pople CB, Lea-Banks H et al (2019) Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. J Control Release 309:25–36. https://doi.org/10.1016/j.jconrel.2019.07.023

    Article  PubMed  CAS  Google Scholar 

  70. Chen L, Cruz E, Oikari LE et al (2022) Opportunities and challenges in delivering biologics for Alzheimer’s disease by low-intensity ultrasound. Adv Drug Deliv Rev 189:114517. https://doi.org/10.1016/j.addr.2022.114517

    Article  PubMed  CAS  Google Scholar 

  71. Tramontin NDS, Silveira PCL, Tietbohl LTW et al (2021) Effects of low-intensity transcranial pulsed ultrasound treatment in a model of Alzheimer’s disease. Ultrasound Med Biol 47:2646–2656. https://doi.org/10.1016/j.ultrasmedbio.2021.05.007

    Article  PubMed  Google Scholar 

  72. Beisteiner R, Matt E, Fan C et al (2020) Transcranial pulse stimulation with ultrasound in Alzheimer’s disease-a new navigated focal brain Therapy. Adv Sci (Weinh) 7:1902583. https://doi.org/10.1002/advs.201902583

    Article  PubMed  Google Scholar 

  73. Kumai T (2017) Isn’t there an inductance factor in the plasma membrane of nerves? Biophys Physicobiol 14:147–152. https://doi.org/10.2142/biophysico.14.0_147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Drukarch B, Wilhelmus MMM, Shrivastava S (2022) The thermodynamic theory of action potential propagation: a sound basis for unification of the physics of nerve impulses. Rev Neurosci 33:285–302. https://doi.org/10.1515/revneuro-2021-0094

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to express our gratitude to all the individuals who participated in this study.

Author information

Authors and Affiliations

Authors

Contributions

Rui Feng is the main author of this manuscript. Hanqing sheng is responsible for searching for relevant literature. Yajun lian revised the manuscript.

Corresponding author

Correspondence to Yajun Lian.

Ethics declarations

Ethical approval

The authors declare that the manuscript has not been submitted to multiple journals at the same time and vouch for its originality and integrity.

Conflict of interest

The authors declare no competing interests.

Institution contribution

Home for Researchers provide figure beatification and ZYEdit provide manuscript editing services.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, R., Sheng, H. & Lian, Y. Advances in using ultrasound to regulate the nervous system. Neurol Sci (2024). https://doi.org/10.1007/s10072-024-07426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10072-024-07426-7

Keywords

Navigation