A Parameterized Complexity View on Collapsing k-Cores

Author:

Luo Junjie,Molter Hendrik,Suchý Ondřej

Abstract

AbstractWe study the -hard graph problem Collapsed k-Core where, given an undirected graph G and integers b, x, and k, we are asked to remove b vertices such that the k-core of remaining graph, that is, the (uniquely determined) largest induced subgraph with minimum degree k, has size at most x. Collapsed k-Core was introduced by Zhang et al. (2017) and it is motivated by the study of engagement behavior of users in a social network and measuring the resilience of a network against user drop outs. Collapsed k-Core is a generalization of r-Degenerate Vertex Deletion (which is known to be -hard for all r ≥ 0) where, given an undirected graph G and integers b and r, we are asked to remove b vertices such that the remaining graph is r-degenerate, that is, every its subgraph has minimum degree at most r. We investigate the parameterized complexity of Collapsed k-Core with respect to the parameters b, x, and k, and several structural parameters of the input graph. We reveal a dichotomy in the computational complexity of Collapsed k-Core for k ≤ 2 and k ≥ 3. For the latter case it is known that for all x ≥ 0 Collapsed k-Core is -hard when parameterized by b. For k ≤ 2 we show that Collapsed k-Core is -hard when parameterized by b and in when parameterized by (b + x). Furthermore, we outline that Collapsed k-Core is in when parameterized by the treewidth of the input graph and presumably does not admit a polynomial kernel when parameterized by the vertex cover number of the input graph.

Funder

Deutsche Forschungsgemeinschaft

Grantová Agentura České Republiky

Technische Universität Berlin

Publisher

Springer Science and Business Media LLC

Subject

Computational Theory and Mathematics,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering critical vertices for reinforcement of large-scale bipartite networks;The VLDB Journal;2024-08-24

2. Mathematical programming formulations for the Collapsed k-Core Problem;European Journal of Operational Research;2023-11

3. Quantifying Node Importance over Network Structural Stability;Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2023-08-04

4. Building large k-cores from sparse graphs;Journal of Computer and System Sciences;2023-03

5. Finding Critical Users in Social Communities via Graph Convolutions (Extended Abstract);2022 IEEE 38th International Conference on Data Engineering (ICDE);2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3