Learning Dynamic Prototypes for Visual Pattern Debiasing

Author:

Liang KongmingORCID,Yin Zijin,Min Min,Liu Yan,Ma Zhanyu,Guo Jun

Abstract

AbstractDeep learning has achieved great success in academic benchmarks but fails to work effectively in the real world due to the potential dataset bias. The current learning methods are prone to inheriting or even amplifying the bias present in a training dataset and under-represent specific demographic groups. More recently, some dataset debiasing methods have been developed to address the above challenges based on the awareness of protected or sensitive attribute labels. However, the number of protected or sensitive attributes may be considerably large, making it laborious and costly to acquire sufficient manual annotation. To this end, we propose a prototype-based network to dynamically balance the learning of different subgroups for a given dataset. First, an object pattern embedding mechanism is presented to make the network focus on the foreground region. Then we design a prototype learning method to discover and extract the visual patterns from the training data in an unsupervised way. The number of prototypes is dynamic depending on the pattern structure of the feature space. We evaluate the proposed prototype-based network on three widely used polyp segmentation datasets with abundant qualitative and quantitative experiments. Experimental results show that our proposed method outperforms the CNN-based and transformer-based state-of-the-art methods in terms of both effectiveness and fairness metrics. Moreover, extensive ablation studies are conducted to show the effectiveness of each proposed component and various parameter values. Lastly, we analyze how the number of prototypes grows during the training process and visualize the associated subgroups for each learned prototype. The code and data will be released at https://github.com/zijinY/dynamic-prototype-debiasing.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3