Multimodal Machine Learning in Image-Based and Clinical Biomedicine: Survey and Prospects

Author:

Warner ElisaORCID,Lee Joonsang,Hsu William,Syeda-Mahmood Tanveer,Kahn Charles E.,Gevaert Olivier,Rao Arvind

Abstract

AbstractMachine learning (ML) applications in medical artificial intelligence (AI) systems have shifted from traditional and statistical methods to increasing application of deep learning models. This survey navigates the current landscape of multimodal ML, focusing on its profound impact on medical image analysis and clinical decision support systems. Emphasizing challenges and innovations in addressing multimodal representation, fusion, translation, alignment, and co-learning, the paper explores the transformative potential of multimodal models for clinical predictions. It also highlights the need for principled assessments and practical implementation of such models, bringing attention to the dynamics between decision support systems and healthcare providers and personnel. Despite advancements, challenges such as data biases and the scarcity of “big data” in many biomedical domains persist. We conclude with a discussion on principled innovation and collaborative efforts to further the mission of seamless integration of multimodal ML models into biomedical practice.

Funder

Foundation for the National Institutes of Health

Center for Strategic Scientific Initiatives, National Cancer Institute

Publisher

Springer Science and Business Media LLC

Reference97 articles.

1. Abdar, M., Samami, M., Mahmoodabad, S. D., Doan, T., Mazoure, B., Hashemifesharaki, R., Liu, L., Khosravi, A., Acharya, U. R., Makarenkov, V., & Nahavandi, S. (2021). Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning. Computers in Biology and Medicine, 135, 104418. https://doi.org/10.1016/j.compbiomed.2021.104418

2. Adamson, A. S., & Welch, H. G. (2019). Machine learning and the cancer-diagnosis problem—No gold standard. New England Journal of Medicine, 381(24), 2285–2287. https://doi.org/10.1056/nejmp1907407

3. Ancker, J. S., Edwards, A., Nosal, S., Hauser, D., Mauer, E., & Kaushal, R. (2017). Effects of workload, work complexity, and repeated alerts on alert fatigue in a clinical decision support system. BMC Medical Informatics and Decision Making. https://doi.org/10.1186/s12911-017-0430-8

4. Azcona, E. A., Besson, P., Wu, Y., Punjabi, A., Martersteck, A., Dravid, A., Parrish, T. B., Bandt, S. K., & Katsaggelos, A. K. (2020). Interpretation of brain morphology in association to Alzheimer’s disease dementia classification using graph convolutional networks on triangulated meshes. In Shape in medical imaging (pp. 95–107). Springer. https://doi.org/10.1007/978-3-030-61056-2_8

5. Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural machine translation by jointly learning to align and translate. In Y. Bengio, Y. LeCun (Eds.), 3rd international conference on learning representations, ICLR 2015, San Diego, CA, USA, May 7–9, 2015, Conference track proceedings. arxiv:1409.0473.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3