Effectiveness of bioretention system and vegetated swale for reducing urban flood risk in equatorial region: a case study in Kuching, Malaysia

Author:

Kuok King KuokORCID,Chiu Po Chan,Chin Mei Yun,Rahman Rezaur,Bakri Muhammad Khusairy Bin

Abstract

AbstractOne of the main causes of urban inundation is the rise of impermeable surfaces brought on by increasing urbanization. Low impact development (LID) practices have been employed in previous studies to mitigate urban flooding. However, the effectiveness of LID practices in reducing runoff peaks and improving water quality is unknown, especially in the equatorial region. This study explored nine alternative scenarios to evaluate the effectiveness of the bioretention system and vegetated swale using the Storm Water Management Model (SWMM). Using precipitation data of December 2021, the Swinburne University of Technology Sarawak Campus has been chosen as the case study. The findings demonstrated that these two LID practices could significantly lessen urban flooding. Under scenario 7, the combination of 28.4% bioretention system and 11.3% vegetated swale reduced the maximum runoff peaks by 22.98% at Peak A, 24.71% at Peak B, and 24.09% at Peak C. In the meantime, under scenario 7, the implemented LID practice has removed 20.09% of TSS, 19.75% of TP, and 12.26% of TN. It was discovered that runoff peak reduction increases as the area covered by vegetated swale and bioretention system increases. The outcomes showed that bioretention system performed better than the vegetated swale in reducing peak runoff and enhancing water quality. Local authorities can use the findings of this study to offer recommendations for reducing disaster risk, controlling urban flooding, and revitalizing urban areas.

Funder

Swinburne University of Technology

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3