Skip to main content

Advertisement

Log in

Gut Microbiota Disorders in Obesity-Associated Benign Prostatic Hyperplasia in Rats

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Benign prostatic hyperplasia (BPH), commonly seen in older men, can cause symptoms of discomfort, and may even need surgical intervention. Studies have shown the potential link between gut microbes and BPH, but the molecular association is not fully understood. Methods: Four-week-old male Sprague–Dawley rats (n = 16) were randomly allocated to normal control diet (ND, 10% fat) and high-fat diet-induced BPH (HFD, 45% fat) groups. Metagenomic analysis was used to examine the abundance and discrepancies in gut microbiota within the two groups after 24 weeks of feeding. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was conducted to assess the biological functions of the differentially expressed genes. Results: Rats with HFD-induced obesity exhibited morphological abnormalities in their prostate tissues. Metagenomic analysis of the gut revealed that Firmicutes were the dominant phyla in the HFD group, whereas the ND group had a higher abundance of Spirochaetes. At the genus level, Ruminococcus spp exhibited greater abundance in the HFD group, whereas Treponema spp were more abundant in the ND group. KEGG analysis demonstrated that the differentially expressed genes were mainly enriched in the NOD-like receptor (NLR) signaling, PI3K-Akt signaling, estrogen-signaling, signalings associated with GABAergic synapses, pantothenate and CoA biosynthesis. Conclusion: The findings of our study indicated that there was a notable variation in the microbiota abundance within the intestinal tract of obese rats suffering from prostate hyperplasia. It is plausible that these differentially abundant bacteria played a role in the development of pathological alterations in the prostate through the facilitation of inflammatory responses; however, additional research is required to validate the findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The metagenomic sequences were accessible at the National Center for Biotechnology Information SRA database with accession number PRJNA876316. (https://www.ncbi.nlm.nih.gov/bioproject?term=PRJNA876316&cmd=DetailsSearch).

References

  • Alonso-Magdalena P, Brössner C, Reiner A, Cheng G, Sugiyama N, Warner M, Gustafsson JA (2009) A role for epithelial-mesenchymal transition in the etiology of benign prostatic hyperplasia. Proc Natl Acad Sci USA 106:2859–2863

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Al-Trad B, Aljabali A, Al Zoubi M, Shehab M, Omari S (2019) Effect of gold nanoparticles treatment on the testosterone-induced benign prostatic hyperplasia in rats. Int J Nanomed 14:3145–3154

    Article  CAS  Google Scholar 

  • An J, Song Y, Kim S, Kong H, Kim K (2023) Alteration of gut microbes in benign prostatic hyperplasia model and finasteride treatment model. Int J Mol Sci 24:5904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzouz D, Omarbekova A, Heguy A, Schwudke D, Gisch N, Rovin BH, Caricchio R, Buyon JP, Alekseyenko AV, Silverman GJ (2019) Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal. Ann Rheum Dis 78:947–956

    Article  CAS  PubMed  Google Scholar 

  • Bai JY, Jin B, Ma JB, Liu TJ, Yang C, Chong Y, Wang X, He D, Guo P (2021) HOTAIR and androgen receptor synergistically increase GLI2 transcription to promote tumor angiogenesis and cancer stemness in renal cell carcinoma. Cancer Lett 498:70–79

    Article  CAS  PubMed  Google Scholar 

  • Bajic P, Dornbier RA, Doshi CP, Wolfe AJ, Farooq AV, Bresler L (2019) Implications of the genitourinary microbiota in prostatic disease. Curr Urol Rep 20:34

    Article  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breban M, Tap J, Leboime A, Said-Nahal R, Langella P, Chiocchia G, Furet JP, Sokol H (2017) Faecal microbiota study reveals specific dysbiosis in spondyloarthritis. Ann Rheum Dis 76:1614–1622

    Article  CAS  PubMed  Google Scholar 

  • Buchfink B, Xie C, Huson DH (2015) Fast and sensitive protein alignment using DIAMOND. Nat Methods 12:59–60

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Dai X, Zhou CC, Li KX, Zhang YJ, Lou XY, Zhu YM, Sun YL, Peng BX, Cui W (2022) Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma. Gut 71:1315–1325

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Zeng P, Yao X, Huang Z, Ling Y, Huang Y, Hou L, Li H, Zhu D, Ma W (2023) Gut microbiota combined with fecal metabolomics reveals the effects of FuFang Runzaoling on the microbial and metabolic profiles in NOD mouse model of Sjögren’s syndrome. BMC Complement Med Ther 23:195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries LE, Lunghi M, Krishnan A, Kooij TWA, Soldati-Favre D (2021) Pantothenate and CoA biosynthesis in Apicomplexa and their promise as antiparasitic drug targets. PLoS Pathog 17:e1010124

    Article  PubMed  PubMed Central  Google Scholar 

  • Gacci M, Corona G, Vignozzi L, Salvi M, Serni S, De Nunzio C, Tubaro A, Oelke M, Carini M, Maggi M (2015) Metabolic syndrome and benign prostatic enlargement: a systematic review and meta-analysis. BJU Int 115:24–31

    Article  PubMed  Google Scholar 

  • Grice EA, Segre JA (2012) The human microbiome: our second genome. Annu Rev Genomics Hum Genet 13:151–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grivas N, Goussia A, Stefanou D, Giannakis D (2016) Microvascular density and immunohistochemical expression of VEGF, VEGFR-1 and VEGFR-2 in benign prostatic hyperplasia, high-grade prostate intraepithelial neoplasia and prostate cancer. Cent European J Urol 69:63–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gu M, Liu C, Yang T, Zhan M, Cai Z, Chen Y, Chen Q, Wang Z (2021) High-fat diet induced gut microbiota alterations associating with Ghrelin/Jak2/Stat3 up-regulation to promote benign prostatic hyperplasia development. Front Cell Dev Biol 9:615928

    Article  PubMed  PubMed Central  Google Scholar 

  • Ho CK, Habib FK (2011) Estrogen and androgen signaling in the pathogenesis of BPH. Nat Rev Urol 8:29–41

    Article  CAS  PubMed  Google Scholar 

  • Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ (2010) Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinform 11:119

    Article  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HY, Wang JW, Juan YS, Li CC, Liu CJ, Cho SY, Yeh HC, Chueh KS, Wu WJ, Wu DC (2021) The impact of urine microbiota in patients with lower urinary tract symptoms. Ann Clin Microbiol Antimicrob 20:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Jaroszewski L, Godzik A (2001) Clustering of highly homologous sequences to reduce the size of large protein databases. Bioinformatics 17:282–283

    Article  CAS  PubMed  Google Scholar 

  • Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676

    Article  CAS  PubMed  Google Scholar 

  • Li LY, Han J, Wu L, Fang C, Li WG, Gu JM, Deng T, Qin CJ, Nie JY, Zeng XT (2022) Alterations of gut microbiota diversity, composition and metabonomics in testosterone-induced benign prostatic hyperplasia rats. Mil Med Res 9:12

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Guo Y, Liu Z, Feng X, Zhou R, He Y, Zhou H, Peng H, Huang Y (2023) Augmented temperature fluctuation aggravates muscular atrophy through the gut microbiota. Nat Commun 14:3494

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Madersbacher S, Sampson N, Culig Z (2019) Pathophysiology of benign prostatic hyperplasia and benign prostatic enlargement: a mini-review. Gerontology 65:458–464

    Article  CAS  PubMed  Google Scholar 

  • Noval Rivas M, Burton OT, Wise P, Zhang YQ, Hobson SA, Garcia Lloret M, Chehoud C, Kuczynski J, Desantis T, Warrington J, Hyde ER, Petrosino JF, Gerber GK, Bry L, Oettgen HC, Mazmanian SK, Chatila TA (2013) A microbiota signature associated with experimental food allergy promotes allergic sensitization and anaphylaxis. J Allergy Clin Immunol 131:201–212

    Article  CAS  PubMed  Google Scholar 

  • Parikesit D, Mochtar CA, Umbas R, Hamid AR (2016) The impact of obesity towards prostate diseases. Prostate Int 4:1–6

    Article  PubMed  Google Scholar 

  • Parsons JK, Carter HB, Partin AW, Windham BG, Metter EJ, Ferrucci L, Landis P, Platz EA (2006) Metabolic factors associated with benign prostatic hyperplasia. J Clin Endocrinol Metab 91:2562–2568

    Article  CAS  PubMed  Google Scholar 

  • Pietrocola F, Galluzzi L, Bravo-San Pedro JM, Madeo F, Kroemer G (2015) Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab 21:805–821

    Article  CAS  PubMed  Google Scholar 

  • Platnich JM, Muruve DA (2019) NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Arch Biochem Biophys 670:4–14

    Article  CAS  PubMed  Google Scholar 

  • Roehrborn CG, Siami P, Barkin J, Damiao R, Major-Walker K, Nandy I, Morrill BB, Gagnier RP, Montorsi F, Comb ATSG (2010) The effects of combination therapy with dutasteride and tamsulosin on clinical outcomes in men with symptomatic benign prostatic hyperplasia: 4-year results from the CombAT study. Eur Urol 57:123–131

    Article  CAS  PubMed  Google Scholar 

  • Russo GI, Bongiorno D, Bonomo C, Musso N, Stefani S, Sokolakis I, Hatzichristodoulou G, Falcone M, Cai T, Smarrazzo F, Verze P (2023) The relationship between the gut microbiota, benign prostatic hyperplasia, and erectile dysfunction. Int J Impot Res 35:350–355

    Article  CAS  PubMed  Google Scholar 

  • Tanes C, Walker EM, Slisarenko N, Gerrets GL, Grasperge BF, Qin X, Jazwinski SM, Bushman FD, Bittinger K, Rout N (2021) Gut microbiome changes associated with epithelial barrier damage and systemic inflammation during antiretroviral therapy of chronic SIV infection. Viruses 13:1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang J, Song X, Zhao M, Chen H, Wang Y, Zhao B, Yu S, Ma T, Gao L (2022) Oral administration of live combined Bacillus subtilis and Enterococcus faecium alleviates colonic oxidative stress and inflammation in osteoarthritic rats by improving fecal microbiome metabolism and enhancing the colonic barrier. Front Microbiol. https://doi.org/10.3389/fmicb.2022.1005842

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsai KY, Wu DC, Wu WJ, Wang JW, Juan YS, Li CC, Liu CJ, Lee HY (2022) Exploring the association between gut and urine microbiota and prostatic disease including benign prostatic hyperplasia and prostate cancer using 16S rRNA sequencing. Biomedicines 10:2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignozzi L, Gacci M, Maggi M (2016) Lower urinary tract symptoms, benign prostatic hyperplasia and metabolic syndrome. Nat Rev Urol 13:108–119

    Article  CAS  PubMed  Google Scholar 

  • Wang SS, Li K, Liu Z, Gui S, Liu N, Liu X (2021) Aerobic exercise ameliorates benign prostatic hyperplasia in obese mice through downregulating the AR/androgen/PI3K/AKT signaling pathway. Exp Gerontol 143:111152

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Wang J, Zhao X, Shen T, Ling L, Liang Y (2023) Association between gut microbiota and benign prostatic hyperplasia: a two-sample mendelian randomization study. Front Cell Infect Microbiol 13:1248381

    Article  PubMed  PubMed Central  Google Scholar 

  • Yelsel K, Alma E, Eken A, Gülüm M, Erçil H, Ayyildiz A (2015) Effect of obesity on International Prostate Symptom Score and prostate volume. Urol Ann 7:371–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Z, Zhang X, Liu J, He P, Zhang S, Zhang Y, Gao J, Yang S, Kang N, Afridi MI, Gao S, Chen C, Tu H (2021) GABAergic synapses suppress intestinal innate immunity via insulin signaling in Caenorhabditis elegans. Proc Natl Acad Sci USA. https://doi.org/10.1073/pnas.2021063118

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (NSFC No. 82073304 to J.Z. and 82172684 to D.H.), and the National Key Research and Development Plan (2019YFC0121501 to D.H.).

Author information

Authors and Affiliations

Authors

Contributions

DH and JZ conceived and designed the study, and procured resources. LG performed the animal model and wrote the initial manuscript. AA performed the bioinformatics analysis. YC and YM were responsible for specimen collection. JLZ carried out the statistical analyses. XL was involved in the conception of the study and edited the manuscript. All authors read and approved the final manuscript. We thank Editage for English language editing.

Corresponding authors

Correspondence to Dalin He or Jin Zeng.

Ethics declarations

Conflict of interest

The authors declare no competing financial conflicts of interest.

Ethical Approval

The Xi’an Jiaotong University Medical Ethics Committee authorized the study (Permission Number: 2021-674).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10528_2023_10634_MOESM1_ESM.tif

Supplementary file1 (TIF 5900 kb) The nonmetric multidimensional scaling (NMDS) analysis of the abundance of intestinal microbiota between the two groups

10528_2023_10634_MOESM2_ESM.tif

Supplementary file2 (TIF 5791 kb) Venn diagram of the relationship between the significant abundance microbiota and functionally enriched pathways

Supplementary file3 (TIF 89506 kb)

Supplementary file4 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, L., Alemasi, A., Chen, Y. et al. Gut Microbiota Disorders in Obesity-Associated Benign Prostatic Hyperplasia in Rats. Biochem Genet (2024). https://doi.org/10.1007/s10528-023-10634-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10634-z

Keywords

Navigation