Endoplasmic reticulum stress and mitochondrial injury are critical molecular drivers of AlCl3-induced testicular and epididymal distortion and dysfunction: protective role of taurine

Author:

Khalaf Hanaa A.,Elsamanoudy Ayman Z.,Abo-Elkhair Salwa M.,Hassan Fatma E.ORCID,Mohie Passant M.,Ghoneim Fatma M.

Abstract

AbstractAluminum, the third most plentiful metal in the Earth’s crust, has potential for human exposure and harm. Oxidative stress plays an essential role in producing male infertility by inducing defects in sperm functions. We aimed to investigate the role of endoplasmic reticulum (ER) stress and mitochondrial injury in the pathogenesis of aluminum chloride (AlCl3)-induced testicular and epididymal damage at the histological, biochemical, and molecular levels, and to assess the potential protective role of taurine. Forty-eight adult male albino rats were separated into four groups (12 in each): negative control, positive control, AlCl3, and AlCl3 plus taurine groups. Testes and epididymis were dissected. Histological and immunohistochemical (Bax and vimentin) studies were carried out. Gene expression of vimentin, PCNA, CHOP, Bcl-2, Bax, and XBP1 were investigated via quantitative real-time polymerase chain reaction (qRT-PCR), besides estimation of malondialdehyde (MDA) and total antioxidant capacity (TAC). Light and electron microscopic examinations of the testes and epididymis revealed pathological changes emphasizing both mitochondrial injury and ER stress in the AlCl3 group. Taurine-treated rats showed a noticeable improvement in the testicular and epididymal ultrastructure. Moreover, they exhibited increased gene expression of vimentin, Bcl-2, and PNCA accompanied by decreased CHOP, Bax, and XBP1 gene expression. In conclusion, male reproductive impairment is a significant hazard associated with AlCl3 exposure. Both ER stress and mitochondrial impairment are critical mechanisms of the deterioration in the testes and epididymis induced by AlCl3, but taurine can amend this.

Funder

Cairo University

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Medical Laboratory Technology,Molecular Biology,Histology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3