Skip to main content
Log in

Association of scrub typhus with the risk of venous thromboembolism and long-term mortality: a population-based cohort study

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Background

The existing literature lacks studies examining the epidemiological link between scrub typhus and deep vein thrombosis (DVT) or pulmonary embolism (PE), and the long-term outcomes. The objective of this study is to explore the potential association between scrub typhus and the subsequent risk of venous thromboembolism, and long-term mortality.

Method

This nationwide cohort study identified 10,121 patients who were newly diagnosed with scrub typhus. Patients with a prior DVT or PE diagnosis before the scrub typhus infection were excluded. A comparison cohort of 101,210 patients was established from the general population using a propensity score matching technique. The cumulative survival HRs for the two cohorts were calculated by the Cox proportional hazards model.

Result

After adjusting for sex, age, and comorbidities, the scrub typhus group had an adjusted HR (95% CI) of 1.02 (0.80–1.30) for DVT, 1.11 (0.63–1.93) for PE, and 1.16 (1.08–1.25) for mortality compared to the control group. The post hoc subgroup analysis revealed that individuals younger than 55 years with a prior scrub typhus infection had a significantly higher risk of DVT (HR: 1.59; 95% CI: 1.12–2.25) and long-term mortality (HR: 1.75; 95% CI, 1.54–1.99).

Conclusion

The scrub typhus patients showed a 16% higher risk of long-term mortality. For those in scrub typhus cohort below 55 years of age, the risk of developing DVT was 1.59 times higher, and the risk of mortality was 1.75 times higher. Age acted as an effect modifier influencing the relationship between scrub typhus and risk of new-onset DVT and death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from the National Health Insurance Research Database (NHIRD). Due to legal restrictions imposed by the government of Taiwan regarding the “Personal Information Protection Act”, data sets are not publicly available. Requests for data can be sent as a formal proposal to the NHIRD (http://nhird.nhri.org.tw).

References

  1. Di Nisio M, van Es N, Büller HR (2016) Deep vein thrombosis and pulmonary embolism. Lancet 388(10063):3060–3073

    Article  PubMed  Google Scholar 

  2. Tritschler T, Kraaijpoel N, Le Gal G, Wells PS (2018) Venous thromboembolism: advances in diagnosis and treatment. JAMA 320(15):1583–1594

    Article  PubMed  Google Scholar 

  3. Konstantinides SV, Meyer G, Becattini C, Bueno H, Geersing G-J, Harjola V-P et al (2019) 2019 ESC guidelines for the diagnosis and management of acute pulmonary embolism developed in collaboration with the European Respiratory Society (ERS): the Task Force for the diagnosis and management of acute pulmonary embolism of the European Society of Cardiology (ESC). Eur Heart J 41(4):543–603

    Article  Google Scholar 

  4. Wakefield TW, Myers DD, Henke PK, Arteriosclerosis (2008) Thromb Vascular Biology 28(3):387–391

    Article  CAS  Google Scholar 

  5. Koupenova M, Kehrel BE, Corkrey HA, Freedman JE (2016) Thrombosis and platelets: an update. Eur Heart J 38(11):785–791

    Google Scholar 

  6. Stark K, Massberg S (2021) Interplay between inflammation and thrombosis in cardiovascular pathology. Nat Reviews Cardiol 18(9):666–682

    Article  Google Scholar 

  7. Heestermans M, Poenou G, Duchez A-C, Hamzeh-Cognasse H, Bertoletti L, Cognasse F (2022) Immunothrombosis and the role of platelets in venous thromboembolic diseases. Int J Mol Sci 23(21):13176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee Y-S, Wang P-H, Tseng S-J, Ko C-F, Teng H-J (2006) Epidemiology of scrub typhus in eastern Taiwan, 2000–2004. Jpn J Infect Dis 59(4):235–238

    Article  PubMed  Google Scholar 

  9. Tsai P-J, Yeh H-C (2013) Scrub typhus islands in the Taiwan area and the association between scrub typhus disease and forest land use and farmer population density: geographically weighted regression. BMC Infect Dis 13(1):191

    Article  PubMed  PubMed Central  Google Scholar 

  10. Lin F-H, Chou Y-C, Chien W-C, Chung C-H, Hsieh C-J, Yu C-P (2021) Epidemiology and risk factors for notifiable Scrub Typhus in Taiwan during the period 2010–2019. Healthcare 9(12):1619

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jeong YJ, Kim S, Wook YD, Lee JW, Kim K-I, Lee SH (2007) Scrub Typhus: clinical, pathologic, and imaging findings. Radiographics 27(1):161–172

    Article  PubMed  Google Scholar 

  12. Venkategowda PM, Rao SM, Mutkule DP, Rao MV, Taggu AN (2015) Scrub typhus: clinical spectrum and outcome. Indian J Crit Care Med 19(4):208–213

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rajapakse S, Weeratunga P, Sivayoganathan S, Fernando SD (2017) Clinical manifestations of scrub typhus. Trans R Soc Trop Med Hyg 111(2):43–54

    Article  PubMed  Google Scholar 

  14. Trent B, Fisher J, Soong L (2019) Scrub Typhus Pathogenesis: Innate Immune Response and Lung Injury during Orientia tsutsugamushi infection. Front Microbiol. ;10

  15. Walker DH (2007) Rickettsiae and Rickettsial infections: the current state of knowledge. Clin Infect Dis 45(Supplement1):S39–S44

    Article  PubMed  Google Scholar 

  16. Paris DH, Phetsouvanh R, Tanganuchitcharnchai A, Jones M, Jenjaroen K, Vongsouvath M et al (2012) Orientia tsutsugamushi in Human Scrub Typhus eschars shows tropism for dendritic cells and monocytes rather than endothelium. PLoS Negl Trop Dis 6(1):e1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paris DH, Stephan F, Bulder I, Wouters D, van der Poll T, Newton PN et al (2015) Increased nucleosomes and Neutrophil Activation Link to Disease Progression in patients with Scrub Typhus but not murine Typhus in Laos. PLoS Negl Trop Dis 9(8):e0003990

    Article  PubMed  PubMed Central  Google Scholar 

  18. Park EC, Lee S-Y, Yun SH, Choi C-W, Lee H, Song HS et al (2018) Clinical proteomic analysis of scrub typhus infection. Clin Proteomics 15(1):6

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jena SS, Mathew A, Fau - Sanjith A, Sanjith A, Fau - Ajith S, Ajith S Fau - Nair BR, Nair Br Fau - Prakash J, Prakash J (2014) Cerebral venous sinus thrombosis presentation in severe scrub typhus infection: a rare entity. Neurol India. ;62(3):308 – 10

  20. Cho J-H, Lee C-H (2019) Pulmonary artery thrombosis Associated with Scrub Typhus. Infect Chemother 51(1):73–76

    Article  PubMed  Google Scholar 

  21. Ghosh T, Annigeri S, Ghosh A, Mondal K, Misra S (2020) Pulmonary thromboembolism – a rare complication in a scrub typhus infection. IDCases 20:e00751

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sardana V, Shringi P (2020) Neurological manifestations of Scrub Typhus: a Case Series from Tertiary Care Hospital in Southern East Rajasthan. Ann Indian Acad Neurol 23(6):803–811

    Google Scholar 

  23. Biswas U, Ghosh R, Chakraborty A, Mondal SR, Roy D, Bhattacharjee A et al (2022) Cerebral venous sinus thrombosis following Scrub Typhus infection: a Case Report and a review of the literature. Med Res Arch 10(10):1018103

    Article  Google Scholar 

  24. Das S, Chattopadhyay S, Munsi K, Basu S (2021) Scrub typhus with cerebral venous sinus thrombosis: a rare presentation. BMJ Case Rep 14(4):e241401

    Article  PubMed  PubMed Central  Google Scholar 

  25. Watt G, Parola P (2003) Scrub typhus and tropical rickettsioses. Curr Opin Infect Dis 16(5):429–436

    Article  PubMed  Google Scholar 

  26. Colling ME, Tourdot BE, Kanthi Y (2021) Inflammation, infection and venous thromboembolism. Circ Res 128(12):2017–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mejer N, Westh H, Schønheyder HC, Jensen AG, Larsen AR, Skov R et al (2014) Increased risk of venous thromboembolism within the first year after Staphylococcus aureus bacteraemia: a nationwide observational matched cohort study. J Intern Med 275(4):387–397

    Article  CAS  PubMed  Google Scholar 

  28. Katsoularis I, Fonseca-Rodríguez O, Farrington P, Jerndal H, Lundevaller EH, Sund M et al (2022) Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ 377:e069590

    Article  PubMed  Google Scholar 

  29. Bonaventura A, Vecchié A, Dagna L, Martinod K, Dixon DL, Van Tassell BW et al (2021) Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat Rev Immunol 21(5):319–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu E-S, Chiang C-H, Hung W-T, Tang P-L, Hung CC, Kuo S-H et al (2019) Comparison of long-term mortality in patients with acute myocardial infarction associated with or without sepsis. Int J Infect Dis 79:169–178

    Article  PubMed  Google Scholar 

  31. Paris DH, Chansamouth V, Nawtaisong P, Lowenberg EC, Phetsouvanh R, Blacksell SD et al (2012) Coagulation and inflammation in scrub typhus and murine typhus–a prospective comparative study from Laos. Clin Microbiol Infect 18(12):1221–1228

    Article  CAS  PubMed  Google Scholar 

  32. Lee H-J, Park C-Y, Park S-G, Yoon N-R, Kim D-M, Chung C-H (2017) Activation of the coagulation cascade in patients with scrub typhus. Diagn Microbiol Infect Dis 89(1):1–6

    Article  PubMed  Google Scholar 

  33. Chung W-S, Lin C-L, Hsu W-H, Kao C-H (2014) Scrub typhus increases the risk of developing acute coronary syndrome: a nationwide cohort study. Heart 100(23):1844

    Article  PubMed  Google Scholar 

  34. Lacruz B, Tiberio G, Latorre A, Villalba JC, Bikdeli B, Hirmerova J et al (2019) Venous thromboembolism in young adults: findings from the RIETE registry. Eur J Intern Med 63:27–33

    Article  PubMed  Google Scholar 

  35. Li KY, Chou MC, Wei JC, Lin MC, Hung YM, Chang R (2021) Newly diagnosed leptospirosis and subsequent hemorrhagic stroke: a Nationwide Population-based Cohort Study. Stroke 52(3):913–921

    Article  CAS  PubMed  Google Scholar 

  36. Chang R, Wu DK, Wei JC, Yip HT, Hung YM, Hung CH (2020) The risk of subsequent deep vein thrombosis and pulmonary embolism in patients with nontyphoidal salmonellosis: a Nationwide Cohort Study. Int J Environ Res Public Health. ;17(10)

  37. Shaw AC, Goldstein DR, Montgomery RR (2013) Age-dependent dysregulation of innate immunity. Nat Rev Immunol 13(12):875–887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nordstrom SM, Weiss EJ (2008) Sex differences in thrombosis. Expert Rev Hematol 1(1):3–8

    Article  CAS  PubMed  Google Scholar 

  39. Rehman S, Ravinayagam V, Nahvi I, Aldossary H, Al-Shammari M, Amiri MSA et al (2021) Immunity, sex hormones, and Environmental Factors as determinants of COVID-19 disparity in women. Front Immunol 12:680845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Fulop T, Larbi A, Douziech N, Fortin C, Guerard KP, Lesur O et al (2004) Signal transduction and functional changes in neutrophils with aging. Aging Cell 3(4):217–226

    Article  CAS  PubMed  Google Scholar 

  41. Ortmann W, Kolaczkowska E (2018) Age is the work of art? Impact of neutrophil and organism age on neutrophil extracellular trap formation. Cell Tissue Res 371(3):473–488

    Article  CAS  PubMed  Google Scholar 

  42. Chang YC, Sun W, Lin JN, Chen YH, Lai CH, Lee CH (2021) Epidemiology and risk factors of scrub typhus in Taiwan: a nationwide database study from 1996 to 2014. Zoonoses Public Health 68(8):876–883

    Article  CAS  PubMed  Google Scholar 

  43. Huang N, Yip W, Chang HJ, Chou YJ (2006) Trends in rural and urban differentials in incidence rates for ruptured appendicitis under the National Health Insurance in Taiwan. Public Health 120(11):1055–1063

    Article  CAS  PubMed  Google Scholar 

  44. Wu TY, Majeed A, Kuo KN (2010) An overview of the healthcare system in Taiwan. Lond J Prim Care (Abingdon) 3(2):115–119

    Article  Google Scholar 

  45. Su T-H, Liu C-J, Chen D-S, Kao J-H (2013) Milder clinical manifestation of scrub typhus in Kinmen, Taiwan. J Formos Med Assoc 112(4):201–207

    Article  PubMed  Google Scholar 

  46. Paris DH, Shelite TR, Day NP, Walker DH (2013) Unresolved problems related to Scrub Typhus: a seriously neglected life-threatening Disease. Am Soc Trop Med Hygiene 89(2):301–307

    Article  Google Scholar 

  47. Díaz Fabián E, Abarca K, Kalergis Alexis M (2018) An update on Host-Pathogen Interplay and modulation of Immune responses during Orientia tsutsugamushi infection. Clin Microbiol Rev 31(2):e00076–e00017

    PubMed  PubMed Central  Google Scholar 

  48. Smadel Je Fau -, Ley HL Jr., Hl L Jr Fau -, Diercks RH, Diercks Rh Fau - Cameron JAP, Cameron JA (1952) Persistence of Rickettsia tsutsugamushi in tissues of patients recovered from scrub typhus. Am J Hyg. ;56(3):294–302

  49. Chung M-H, Lee J-S, Baek J-h, Kim M, Kang J-S (2012) Persistence of Orientia tsutsugamushi in humans. J Korean Med Sci 27(3):231–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bonell A, Lubell Y, Newton PN, Crump JA, Paris DH (2017) Estimating the burden of scrub typhus: a systematic review. PLoS Negl Trop Dis 11(9):e0005838

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the Health Data Science Center at the China Medical University Hospital for providing administrative, technical, and funding support. We would like to thank China Medical University, Taiwan (CMU110-MF-115 and CMU111-MF-105), and the Ministry of Science and Technology, Taiwan (MOST 111-2410-H-039-002-MY3) for supporting this publication. The funding entities had no role in the study design, data collection, data analysis, interpretation, or authorship of the manuscript.

Funding

This study was supported by funding from the China Medical University (CMU111-MF-105) and the Ministry of Science and Technology, Taiwan (MOST 109-2410-H-039-002, MOST 110-2410-H-039-002, MOST 111-2410-H-039-002-MY3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Yu Kuo.

Ethics declarations

Ethical approval

The study protocol was reviewed and approved by the Institutional Review Board (IRB) of China Medical University Hospital (certificate: CMUH107-REC3-074 (CR-3)).

Consent to participate

The authors affirm that informed consent was not demanded because the NHIRD data consists of de-identified secondary data for research purposes.

Consent for publication

The authors affirm that consent for publication was not demanded because all personal data were de-identified.

Conflict of interest

The authors have no conflicts of interest to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, ES., Wu, YT., Liang, WM. et al. Association of scrub typhus with the risk of venous thromboembolism and long-term mortality: a population-based cohort study. Eur J Clin Microbiol Infect Dis (2024). https://doi.org/10.1007/s10096-024-04793-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10096-024-04793-z

Keywords

Navigation