In Vitro Effects of Boric Acid on Cell Cycle, Apoptosis, and miRNAs in Medullary Thyroid Cancer Cells

Author:

Yıldırım OnurcanORCID,Seçme Mücahit,Dodurga Yavuz,Mete Gülçin Abban,Fenkci Semin Melahat

Abstract

AbstractMedullary thyroid cancer (MTC) is a highly aggressive and chemotherapy-resistant cancer originating from the thyroid’s parafollicular C cells. Due to its resistance to conventional treatments, alternative therapies such as boric acid have been explored. Boric acid, a boron-based compound, has shown anticarcinogenic effects, positioning it as a potential treatment option for MTC. TT medullary thyroid carcinoma cell line (TT cells) and human thyroid fibroblast (HThF cells) were utilized for the cell culture experiments. Cell viability was assessed using the 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Total RNA was extracted using Trizol reagent for gene expression and microRNA (miRNA) analysis via reverse transcription-polymerase chain reaction (RT-PCR). The extent of apoptosis induced by boric acid was determined using the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Colony formation assays were conducted to evaluate the impact of boric acid on the colony-forming ability of MTC cells. At 48 h, 50% inhibitory concentration (IC50) of boric acid was found to be 35 μM. Treatment with boric acid resulted in significant modulation of apoptosis-related genes and miRNAs, including increased expression of phorbol-12-myristate-13-acetate-induced protein 1(NOXA), apoptotic protease activating factor 1 (APAF-1), Bcl-2-associated X protein (Bax), caspase-3, and caspase-9. In contrast, the expression of B cell lymphoma 2 (Bcl2), B cell lymphoma‐ extra-large (Bcl-xl), and microRNA-21 (miR-21), which are linked to the aggressiveness of MTC, was significantly reduced. The TUNEL assay indicated a 14% apoptosis rate, and there was a 67.9% reduction in colony formation, as shown by the colony formation assay. Our study suggests that boric acid may have anticancer activity in MTC by modulating apoptotic pathways. These findings suggest that boric acid could be a potential therapeutic agent for MTC and possibly for other malignancies with similar pathogenic mechanisms.

Funder

Ege University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3