Potential dosimetric error in the adaptive workflow of a 1.5 T MR-Linac from patient movement relative to immobilisation systems

Author:

Liu MinORCID,Tang BinORCID,Orlandini Lucia ClaraORCID,Li JieORCID,Wang XianliangORCID,Peng QianORCID,Thwaites DavidORCID

Abstract

AbstractIn magnetic resonance- (MR-) based adaptive workflows for an MR-linac, the treatment plan is optimized and recalculated online using the daily MR images. The Unity MR-linac is supplied with a patient positioning device (ppd) using pelvic and abdomen thermoplastic masks attached to a board with high-density components. This study highlights the dosimetric effect of using this in such workflows when there are relative patient-ppd displacements, as these are not visualized on MR imaging and the treatment planning system assumes the patient is fixed relative to the ppd. The online adapted plans of two example rectum cancer patients treated at a Unity MR-linac were perturbed by introducing relative patient-ppd displacements, and the effect was evaluated on plan dosimetry. Forty-eight perturbed clinical adapted plans were recalculated, based on online MR-based synthetic computed tomography, and compared with the original plans, using dose-volume histogram parameters and gamma analysis. The target volume covered by the prescribed dose ($${\text{D}}_{\text{p}\text{r}\text{e}}$$ D pre ) and by at least 107% of $${\text{D}}_{\text{p}\text{r}\text{e}}$$ D pre varied up to − 1.87% and + 3.67%, respectively for 0.5 cm displacements, and to − 3.18% and + 4.96% for 2 cm displacements; whilst 2%–2 mm gamma analysis showed a median value of 92.9%. The use of a patient positioning system with high-density components in a Unity MR-based online adaptive treatment workflow can introduce unrecognized errors in plan dosimetry and it is recommended not to use such a device for such treatments, without modifying the device and the workflow, followed by careful clinical evaluation, or alternatively to use other immobilization methods.

Funder

Natural Science Foundation of Sichuan Province

Medical Engineering Innovation Fund for Cancer

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Biophysics,Radiological and Ultrasound Technology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3