A novel computer modeling and simulation technique for bronchi motion tracking in human lungs under respiration

Author:

Kim Byeong-Jun,Ahn Hyo Yeong,Song Chanhee,Ryu Dongman,Goh Tae Sik,Lee Jung Sub,Lee ChiseungORCID

Abstract

AbstractIn this work, we proposed a novel computer modeling and simulation technique for motion tracking of lung bronchi (or tumors) under respiration using 9 cases of computed tomography (CT)-based patient-specific finite element (FE) models and Ogden’s hyperelastic model. In the fabrication of patient-specific FE models for the respiratory system, various organs such as the mediastinum, diaphragm, and thorax that could affect the lung motions during breathing were considered. To describe the nonlinear material behavior of lung parenchyma, the comparative simulation for biaxial tension-compression of lung parenchyma was carried out using several hyperelastic models in ABAQUS, and then, Ogden’s model was adopted as an optimal model. Based on the aforementioned FE models and Ogden’s material model, the 9 cases of respiration simulation were carried out from exhalation to inhalation, and the motion of lung bronchi (or tumors) was tracked. In addition, the changes in lung volume, lung cross-sectional area on the axial plane during breathing were calculated. Finally, the simulation results were quantitatively compared to the inhalation/exhalation CT images of 9 subjects to validate the proposed technique. Through the simulation, it was confirmed that the average relative errors of simulation to clinical data regarding to the displacement of 258 landmarks in the lung bronchi branches of total subjects were 1.10%~2.67%. In addition, the average relative errors of those with respect to the lung cross-sectional area changes and the volume changes in the superior-inferior direction were 0.20%~5.00% and 1.29 ~ 9.23%, respectively. Hence, it was considered that the simulation results were coincided well with the clinical data. The novelty of the present study is as follows: (1) The framework from fabrication of the human respiratory system to validation of the bronchi motion tracking is provided step by step. (2) The comparative simulation study for nonlinear material behavior of lung parenchyma was carried out to describe the realistic lung motion. (3) Various organs surrounding the lung parenchyma and restricting its motion were considered in respiration simulation. (4) The simulation results such as landmark displacement, lung cross-sectional area/volume changes were quantitatively compared to the clinical data of 9 subjects.

Funder

National Research Foundation of Korea (NRF) grant funded by the Korean government

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Biomedical Engineering,Biophysics,Radiological and Ultrasound Technology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3