Experimental Investigation of a Method for Selective and Precise Laser De-Coating

Author:

Primus Tomáš,Hlavinka Josef,Zeman Pavel,Kožmín Pavel,Čermák Adam

Abstract

AbstractCoatings are used in many industrial applications as a protective barrier, improving component properties such as friction, wear resistance, and thermal resistivity. When components become worn, any coatings must be thoroughly removed before performing repairs. Laser stripping is a relatively new technology developed for the entire coating removal. So far, only laser stripping of the entire coatings has been discussed in literature, but its application in selective de-coating layer by layercan extend the usage of this technique. Herein, we describe a new method of selective and precise laser de-coating layer by layer in layer thickness lower than 0,15 μm and demonstrate tise technique on two coatings, namely AlTiN and diamond-like carbon. This method is based on ablation threshold measurement and the application of low laser beam fluences for selective de-coating, layer by layer, in a defined pattern. Then the average minimal removals per layer were estimated for both coatings using first and second harmonic wavelengths. Finally, the usage of this method was proved by chemical analysis of the de-coated areas. The presented method can extend the use of laser coating stripping from actual removal of whole coatings to new areas, for example thickness measurement or inter-layer inspection of coatings.

Funder

Czech Technical University in Prague

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Instrumentation,Nuclear and High Energy Physics,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3