Skip to main content

Advertisement

Log in

Circular RNA CircSLC22A23 Promotes Gastric Cancer Progression by Activating HNRNPU Expression

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

Circular RNAs (CircRNAs) play essential roles in cancer occurrence as regulatory RNAs. However, circRNA-mediated regulation of gastric cancer (GC) remains poorly understood.

Aim

The purpose of this study was to investigate the molecular mechanism of circSLC22A23 (hsa_circ_0075504) underlying GC occurrence.

Methods

CircSLC22A23 levels were first quantified by quantitative real-time reverse transcription-polymerase chain reaction in GC cell lines, 80 paired GC tissues and adjacent normal tissues, and 27 pairs of plasma samples from preoperative and postoperative patients with GC. Then circSLC22A23 was knocked-down with short hairpin RNA to analyze its oncogenic effects on the proliferation, migration, and invasion of GC cells. Finally, circRNA-binding proteins and their downstream target genes were identified by RNA pulldown, mass spectrometry, RNA immunoprecipitation, quantitative real-time reverse transcription-polymerase chain reaction, and Western blot assays.

Results

CircSLC22A23 was found to be highly expressed in GC cells, GC tissues, and plasma from GC patients. Knockdown of circSLC22A23 inhibited GC cell proliferation, migration and invasion. RNA pulldown and RNA immunoprecipitation assays verified the interaction between circSLC22A23 and heterogeneous nuclear ribonucleoprotein U (HNRNPU). Knockdown of circSLC22A23 decreased HNRNPU protein levels. Moreover, rescue assays showed that the tumor suppressive effect of circSLC22A23 knockdown was reversed by HNRNPU overexpression. Finally, epidermal growth factor receptor (EGFR) was found to be one of the downstream target genes of HNRNPU that was up regulated by circSLC22A23.

Conclusion

CircSLC22A23 regulated the transcription of EGFR through activation of HNRNPU in GC cells, suggesting that circSLC22A23 may serve as a potential therapeutic target for the treatment of GC.

Graphical Abstract

The mechanism underlying the effects of circSLC22A23 on gastric cancer. CircSLC22A23 regulates EGFR transcription by activating HNRNPU expression, thereby promoting the progression of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data to support the results of this study are included in the article.

References

  1. Alsina M, Arrazubi V, Diez M, et al. Current developments in gastric cancer: from molecular profiling to treatment strategy. Nat Rev Gastroenterol Hepatol 2023;20:155–170. https://doi.org/10.1038/s41575-022-00703-w.

    Article  CAS  PubMed  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–249. https://doi.org/10.3322/caac.21660.

    Article  CAS  PubMed  Google Scholar 

  3. López MJ, Carbajal J, Alfaro AL, et al. Characteristics of gastric cancer around the world. Crit Rev Oncol Hematol 2023;181:103841. https://doi.org/10.1016/j.critrevonc.2022.103841.

    Article  PubMed  Google Scholar 

  4. Peng Y, Xu Y, Zhang X, Deng S, Yuan Y, Luo X, Hossain MT, Zhu X, Du K, Hu F, Chen Y, Chang S, Feng X, Fan X, Ashktorab H, Smoot D, Meltzer SJ, Hou G, Wei Y, Li S, Qin Y, Jin Z. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol Cancer 2021;20:158. https://doi.org/10.1186/s12943-021-01457-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J. The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 2019;20:675–691. https://doi.org/10.1038/s41576-019-0158-7.

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Sun D, Pu W, et al. Circular RNAs in cancer: biogenesis, function, and clinical significance. Trends Cancer 2020;6:319–336. https://doi.org/10.1016/j.trecan.2020.01.012.

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Xie Y, Xiao B, et al. The tumor suppressor function of hsa_circ_0006282 in gastric cancer through PTEN/AKT pathway. Int J Clin Oncol 2022;27:1562–1569. https://doi.org/10.1007/s10147-022-02210-z.

    Article  CAS  PubMed  Google Scholar 

  8. Liu CX, Chen LL. Circular RNAs: characterization, cellular roles, and applications. Cell 2022;185:2016–2034. https://doi.org/10.1016/j.cell.2022.04.021.

    Article  CAS  PubMed  Google Scholar 

  9. Cao L, Wang M, Dong Y, et al. Circular RNA circRNF20 promotes breast cancer tumorigenesis and Warburg effect through miR-487a/HIF-1α/HK2. Cell Death Dis 2020;11:145. https://doi.org/10.1038/s41419-020-2336-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cheng Z, Yu C, Cui S, et al. circTP63 functions as a ceRNA to promote lung squamous cell carcinoma progression by upregulating FOXM1. Nat Commun 2019;10:3200. https://doi.org/10.1038/s41467-019-11162-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang X, Chen M, Fang L. hsa_circ_0068631 promotes breast cancer progression through c-Myc by binding to EIF4A3. Mol Ther Nucleic Acids 2021;26:122–134. https://doi.org/10.1016/j.omtn.2021.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen J, Wu Y, Luo X, et al. Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. Theranostics 2021;11:7507–7526. https://doi.org/10.7150/thno.59546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun YM, Wang WT, Zeng ZC, et al. circMYBL2, a circRNA from MYBL2, regulates FLT3 translation by recruiting PTBP1 to promote FLT3-ITD AML progression. Blood 2019;134:1533–1546. https://doi.org/10.1182/blood.2019000802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen R, Wang SK, Belk JA, et al. Engineering circular RNA for enhanced protein production. Nat Biotechnol 2023;41:262–272. https://doi.org/10.1038/s41587-022-01393-0.

    Article  CAS  PubMed  Google Scholar 

  15. Fan X, Yang Y, Chen C, et al. Pervasive translation of circular RNAs driven by short IRES-like elements. Nat Commun 2022;13:3751. https://doi.org/10.1038/s41467-022-31327-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li T, Shao Y, Fu L, et al. Plasma circular RNA profiling of patients with gastric cancer and their droplet digital RT-PCR detection. J Mol Med (Berlin, Germany) 2018;96:85–96. https://doi.org/10.1007/s00109-017-1600-y.

    Article  CAS  Google Scholar 

  17. Cai Y, Zhao X, Chen D, et al. circ-NOL10 regulated by MTDH/CASC3 inhibits breast cancer progression and metastasis via multiple miRNAs and PDCD4. Mol Ther Nucleic Acids 2021;26:773–786. https://doi.org/10.1016/j.omtn.2021.09.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu M, Lai M, Li D, et al. Nucleus-localized circSLC39A5 suppresses hepatocellular carcinoma development by binding to STAT1 to regulate TDG transcription. Cancer Sci 2023;114:3884–3899. https://doi.org/10.1111/cas.15906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhao Z, Yang W, Kong R, et al. circEIF3I facilitates the recruitment of SMAD3 to early endosomes to promote TGF-β signalling pathway-mediated activation of MMPs in pancreatic cancer. Mol Cancer 2023;22:152. https://doi.org/10.1186/s12943-023-01847-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shen W, Song Z, Zhong X, et al. Sangerbox: a comprehensive, interaction-friendly clinical bioinformatics analysis platform. iMeta 2022;1:e36. https://doi.org/10.1002/imt2.36.

    Article  Google Scholar 

  21. Shi ZD, Hao L, Han XX, et al. Targeting HNRNPU to overcome cisplatin resistance in bladder cancer. Mol Cancer 2022;21:37. https://doi.org/10.1186/s12943-022-01517-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li R, Jiang J, Shi H, et al. CircRNA: a rising star in gastric cancer. Cell Mol Life Sci (CMLS) 2020;77:1661–1680. https://doi.org/10.1007/s00018-019-03345-5.

    Article  CAS  PubMed  Google Scholar 

  23. Liu X, Zhang Y, Zhou S, et al. Circular RNA: an emerging frontier in RNA therapeutic targets, RNA therapeutics, and mRNA vaccines. J Control Release 2022;348:84–94. https://doi.org/10.1016/j.jconrel.2022.05.043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shan C, Zhang Y, Hao X, et al. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer 2019;18:136. https://doi.org/10.1186/s12943-019-1069-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shao Y, Li J, Lu R, et al. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med 2017;6:1173–1180. https://doi.org/10.1002/cam4.1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zang X, Jiang J, Gu J, et al. Circular RNA EIF4G3 suppresses gastric cancer progression through inhibition of β-catenin by promoting δ-catenin ubiquitin degradation and upregulating SIK1. Mol Cancer 2022;21:141. https://doi.org/10.1186/s12943-022-01606-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Liu H, Fang D, Zhang C, et al. Circular MTHFD2L RNA-encoded CM-248aa inhibits gastric cancer progression by targeting the SET-PP2A interaction. Mol Ther 2023;31:1739–1755. https://doi.org/10.1016/j.ymthe.2023.04.013.

    Article  CAS  PubMed  Google Scholar 

  28. Han BY, Liu Z, Hu X, et al. HNRNPU promotes the progression of triple-negative breast cancer via RNA transcription and alternative splicing mechanisms. Cell Death Dis 2022;13:940. https://doi.org/10.1038/s41419-022-05376-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liang Y, Fan Y, Liu Y, et al. HNRNPU promotes the progression of hepatocellular carcinoma by enhancing CDK2 transcription. Exp Cell Res 2021;409:112898. https://doi.org/10.1016/j.yexcr.2021.112898.

    Article  CAS  PubMed  Google Scholar 

  30. Chen X, Gong R, Wang J, Ma B, Lei K, Ren H, Wang J, Zhao C, Wang L, Yu Q. Identification of HnRNP family as prognostic biomarkers in five major types of gastrointestinal cancer. Curr Gene Ther 2022;22:449–461. https://doi.org/10.2174/1566523222666220613113647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vu NT, Park MA, Shultz JC, et al. hnRNP U enhances caspase-9 splicing and is modulated by AKT-dependent phosphorylation of hnRNP L. J Biol Chem 2013;288:8575–8584. https://doi.org/10.1074/jbc.M112.443333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang L, Song D, Zhu B, et al. The role of nuclear matrix protein HNRNPU in maintaining the architecture of 3D genome. Semin Cell Dev Biol 2019;90:161–167. https://doi.org/10.1016/j.semcdb.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  33. Schlessinger J. Receptor tyrosine kinases: legacy of the first two decades. Cold Spring Harbor Perspect Biol. 2014. https://doi.org/10.1101/cshperspect.a008912.

    Article  Google Scholar 

  34. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018;12:3–20. https://doi.org/10.1002/1878-0261.12155.

    Article  PubMed  Google Scholar 

  35. Yarden Y, Pines G. The ERBB network: at last, cancer therapy meets systems biology. Nat Rev Cancer 2012;12:553–563. https://doi.org/10.1038/nrc3309.

    Article  CAS  PubMed  Google Scholar 

  36. Dragovich T, McCoy S, Fenoglio-Preiser CM, et al. Phase II trial of erlotinib in gastroesophageal junction and gastric adenocarcinomas: SWOG 0127. J Clin Oncol 2006;24:4922–4927. https://doi.org/10.1200/jco.2006.07.1316.

    Article  CAS  PubMed  Google Scholar 

  37. Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci 2014;15:13768–13801. https://doi.org/10.3390/ijms150813768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan H, Lv P, Huo X, et al. The nuclear matrix protein HNRNPU maintains 3D genome architecture globally in mouse hepatocytes. Genome Res 2018;28:192–202. https://doi.org/10.1101/gr.224576.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng C, Song C, Liu Y, et al. KnockTF: a comprehensive human gene expression profile database with knockdown/knockout of transcription factors. Nucleic Acids Res 2020;48:D93–D100. https://doi.org/10.1093/nar/gkz881.

    Article  CAS  PubMed  Google Scholar 

  40. Luo Y, Hitz BC, Gabdank I, et al. New developments on the Encyclopedia of DNA Elements (ENCODE) data portal. Nucleic Acids Res 2020;48:D882–D889. https://doi.org/10.1093/nar/gkz1062.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang Q, Liu W, Zhang HM, et al. hTFtarget: a comprehensive database for regulations of human transcription factors and their targets. Genomics Proteomics Bioinformatics 2020;18:120–128. https://doi.org/10.1016/j.gpb.2019.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Min P, Zhao S, Liu L, et al. MICAL-L2 potentiates Cdc42-dependent EGFR stability and promotes gastric cancer cell migration. J Cell Mol Med 2019;23:4475–4488. https://doi.org/10.1111/jcmm.14353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sun Z, Gao X, Zabkiewicz C, et al. Noggin is associated with a poor prognosis of gastric cancer by promoting the proliferation of gastric cancer cells via the upregulation of EGFR. Int J Oncol 2020;57:813–824. https://doi.org/10.3892/ijo.2020.5081.

    Article  CAS  PubMed  Google Scholar 

  44. Zhang H, Deng T, Liu R, et al. Exosome-delivered EGFR regulates liver microenvironment to promote gastric cancer liver metastasis. Nat Commun 2017;8:15016. https://doi.org/10.1038/ncomms15016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao T, Lu Y, Wang Q, et al. A CGA/EGFR/GATA2 positive feedback circuit confers chemoresistance in gastric cancer. J Clin Invest. 2022. https://doi.org/10.1172/jci154074.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lei ZN, Teng QX, Tian Q, et al. Signaling pathways and therapeutic interventions in gastric cancer. Signal Transduct Target Ther 2022;7:358. https://doi.org/10.1038/s41392-022-01190-w.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Wang L, Zhang H, Zheng J, et al. Dual silencing of EGFR and HER2 enhances the sensitivity of gastric cancer cells to gefitinib. Mol Carcinogenesis 2018;57:1008–1016. https://doi.org/10.1002/mc.22821.

    Article  CAS  Google Scholar 

  48. Li F, Yu J, Pan T, et al. BPTF drives gastric cancer resistance to EGFR inhibitor by epigenetically regulating the C-MYC/PLCG1/Perk axis. Adv Sci (Weinheim, Baden-Wurttemberg, Germany) 2023;10:e2303091. https://doi.org/10.1002/advs.202303091.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks for the technical support by the Core Facilities, Health Science Center, Ningbo University. Thanks for the assistance of Figdraw (www.figdraw.com; figure ID: OAOTTa3c23) in the mechanism drawing. Thanks to the ENCODE consortium and ENCODE production laboratory, KnockTF database, and hTFtarget database that generate specific datasets for EGFR transcription factor predictions.

Funding

This study was supported by grants from the Zhejiang Provincial Natural Science Foundation of China (No. LGF21H200004), the National Natural Science Foundation of China (No. 81772279), the Ningbo Municipal Bureau of Science and Technology (No. 2021Z133, 2022Z130), and the K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Contributions

J. G. and X. W. designed the study. X. W. and J. G. wrote the manuscript. X. W. and C. C. performed most of the experiments, collected the data. Z. L., Y. X., and S. Z., assisted in the experiments. W. S. designed clinical study and analysis. All authors revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Junming Guo.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Ethical approval

This study was approved by the Ethics Committee of Ningbo University (No. 2017022701), and written informed consent was obtained from all the patients.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 589 KB)

Supplementary file2 (XLSX 191 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Cao, C., Li, Z. et al. Circular RNA CircSLC22A23 Promotes Gastric Cancer Progression by Activating HNRNPU Expression. Dig Dis Sci 69, 1200–1213 (2024). https://doi.org/10.1007/s10620-024-08291-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-024-08291-2

Keywords

Navigation