A comparative machinability analysis of polyimine vitrimer, epoxy and polycarbonate polymers through orthogonal machining experiments

Author:

Poór Dániel István,Tobey Marina,Taynton Philip,Pomázi Ákos,Toldy Andrea,Geier NorbertORCID

Abstract

AbstractEnd-of-life management of fibre-reinforced thermoset composites is challenging due to the difficult-to-recycle reinforcements and the irreversibly polymerised thermoset matrix; therefore, researchers proposed the vitrimers as a sustainable alternative to thermosetting polymers. Although the early results of the material scientists are promising, the machinability of vitrimers has yet to be explored. Therefore, this paper aims to present a comparative machinability study of polyimine vitrimer, pentaerythritol-based epoxy (PER) and polycarbonate polymers through orthogonal machining experiments. Reflecting on the temperature-dependent properties of vitrimers, the starting temperature of the cutting tool was varied between room temperature and an elevated temperature above 155 °C. The cutting tool was heated by a 2000-W hot air gun until the surface temperature of the cutting tool, monitored by a VariocamHD thermographic IR camera (with Jenoptik IR 1.0/60 LW lens) and checked by a Fluke 51 II thermometer with a type K thermocouple, was permanently above 155 °C for 5 min. The cutting force was measured by a Kistler 9257B dynamometer, and the machined surface was characterised by a Mitutoyo Surftest SJ-400 surface roughness tester and Keyence VHX-5000 (with VH-Z20UT VH lens) microscope. The analysis of variances (ANOVA) results show that the sustainable vitrimer polymer is an appropriate substitute for thermosetting epoxy polymers, especially at low cutting temperatures.

Funder

Budapest University of Technology and Economics

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3