Real-time temperature control in rubber extrusion lines: a neural network approach

Author:

Lukas Marco,Leineweber Sebastian,Reitz Birger,Overmeyer Ludger

Abstract

AbstractIn rubber extrusion, precise temperature control is critical due to the process’s sensitivity to fluctuating parameters like compound behavior and batch-specific material variations. Rapid adjustments to temperature deviations are essential to ensure stable throughput and extrudate surface integrity. Based on our previous research, which initiated the development of a feedforward neural network (FNN) without real-world empirical application, we now present a real-time control system using artificial neural networks (ANNs) for dynamic temperature regulation. The underlying FNN was trained on a dataset comprising different ethylene propylene diene monomer (EPDM) rubber compounds, totaling 14,923 measurement points for each temperature value. After training, the FNN achieves remarkable precision, evidenced by a mean absolute percentage error (MAPE) of 0.68% and a mean squared error (MSE) of 0.63°C2 in predicting temperature variations. Its integration into the control system enables real-time responsiveness, allowing for adjustments to temperature deviations within an average timeframe of 68 ms. A key advantage over proportional-integral-derivative (PID) controllers is the ability to continuously learn and adjust to complex, non-linear, and batch-specific process dynamics. This adaptability results in enhanced process stability, as evidenced by inline manufacturing validation. Our paper presents the first ANN-based rubber extrusion control, demonstrating how machine learning techniques can be effectively leveraged for real-time, adaptive temperature control. Beyond rubber extrusion, this strategy has potential applications in various polymer processing and other industries requiring precise temperature control. Future trends may involve the integration of online learning techniques and the expansion of interconnected manufacturing processes.

Funder

Gottfried Wilhelm Leibniz Universität Hannover

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3