Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes

Author:

Zachar IstvánORCID,Boza Gergely

Abstract

AbstractEndosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote–prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote–prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost–benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria–host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.

Funder

National Research, Development, and Innovation Office

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3