Poly (ADP-ribose) polymerases 16 triggers pathological cardiac hypertrophy via activating IRE1α–sXBP1–GATA4 pathway

Author:

Su Haibi,Xu Jie,Su Zhenghua,Xiao Chenxi,Wang Jinghuan,Zhong Wen,Meng Chen,Yang DiORCID,Zhu Yizhun

Abstract

Abstract Background Pressure overload-induced pathological cardiac hypertrophy is an independent predecessor of heart failure (HF), which remains the leading cause of worldwide mortality. However, current evidence on the molecular determinants of pathological cardiac hypertrophy is still inadequacy. This study aims to elucidate the role and mechanisms of Poly (ADP-ribose) polymerases 16 (PARP16) in the pathogenesis of pathological cardiac hypertrophy. Methods Gain and loss of function approaches were used to demonstrate the effects of genetic overexpression or deletion of PARP16 on cardiomyocyte hypertrophic growth in vitro. Ablation of PARP16 by transducing the myocardium with serotype 9 adeno-associated virus (AAV9)-encoding PARP16 shRNA were then subjected to transverse aortic construction (TAC) to investigate the effect of PARP16 on pathological cardiac hypertrophy in vivo. Co-immunoprecipitation (IP) and western blot assay were used to detect the mechanisms of PARP16 in regulating cardiac hypertrophic development. Results PARP16 deficiency rescued cardiac dysfunction and ameliorated TAC-induced cardiac hypertrophy and fibrosis in vivo, as well as phenylephrine (PE)-induced cardiomyocyte hypertrophic responses in vitro. Whereas overexpression of PARP16 exacerbated hypertrophic responses including the augmented cardiomyocyte surface area and upregulation of the fetal gene expressions. Mechanistically, PARP16 interacted with IRE1α and ADP-ribosylated IRE1α and then mediated the hypertrophic responses through activating the IRE1α–sXBP1–GATA4 pathway. Conclusions Collectively, our results implicated that PARP16 is a contributor to pathological cardiac hypertrophy at least in part via activating the IRE1α–sXBP1–GATA4 pathway, and may be regarded as a new potential target for exploring effective therapeutic interventions of pathological cardiac hypertrophy and heart failure.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3