Intervertebral disc-intrinsic Hedgehog signaling maintains disc cell phenotypes and prevents disc degeneration through both cell autonomous and non-autonomous mechanisms

Author:

Zhang Lei,Hu Siyuan,Xiu Chunmei,Li Meng,Zheng Yixin,Zhang Rui,Li Bin,Chen JianquanORCID

Abstract

AbstractIntervertebral disc degeneration is closely related to abnormal phenotypic changes in disc cells. However, the mechanism by which disc cell phenotypes are maintained remains poorly understood. Here, Hedgehog-responsive cells were found to be specifically localized in the inner annulus fibrosus and cartilaginous endplate of postnatal discs, likely activated by Indian Hedgehog. Global inhibition of Hedgehog signaling using a pharmacological inhibitor or Agc1-CreERT2-mediated deletion of Smo in disc cells of juvenile mice led to spontaneous degenerative changes in annulus fibrosus and cartilaginous endplate accompanied by aberrant disc cell differentiation in adult mice. In contrast, Krt19-CreER-mediated deletion of Smo specifically in nucleus pulposus cells led to healthy discs and normal disc cell phenotypes. Similarly, age-related degeneration of nucleus pulposus was accelerated by genetic inactivation of Hedgehog signaling in all disc cells, but not in nucleus pulposus cells. Furthermore, inactivation of Gli2 in disc cells resulted in partial loss of the vertebral growth plate but otherwise healthy discs, whereas deletion of Gli3 in disc cells largely corrected disc defects caused by Smo ablation in mice. Taken together, our findings not only revealed for the first time a direct role of Hedgehog-Gli3 signaling in maintaining homeostasis and cell phenotypes of annuls fibrosus and cartilaginous endplate, but also identified disc-intrinsic Hedgehog signaling as a novel non-cell-autonomous mechanism to regulate nucleus pulposus cell phenotype and protect mice from age-dependent nucleus pulposus degeneration. Thus, targeting Hedgehog signaling may represent a potential therapeutic strategy for the prevention and treatment of intervertebral disc degeneration.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Cellular and Molecular Neuroscience,Pharmacology,Molecular Biology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3