Genetic analysis of federally endangered Cape Sable seaside sparrow subpopulations in the Greater Everglades, USA

Author:

Beaver Caitlin E.ORCID,Virzi Thomas,Hunter Margaret E.ORCID

Abstract

AbstractThe federally endangered Cape Sable seaside sparrow (Ammospiza maritima mirabilis) is endemic to the Greater Everglades ecosystem in southern Florida, inhabiting fragmented marl prairies in six individual subpopulations. The subspecies is threatened by loss of breeding habitat from fire and water management. Genetic information is severely limited for the subspecies but could help inform decisions regarding subpopulation protections and potential translocations for genetic rescue. To provide genetic data and inform management efforts, feather samples were collected across five subpopulations (designated A–E) and protocols were tested to optimize DNA extraction yields. We assessed four mitochondrial DNA markers (N = 36–69) and 12 nuclear microsatellite loci (N = 55) in 108 sparrows. Mitochondrial DNA sequences revealed low haplotype diversity, with NADH dehydrogenase-2 haplotypes matching to most other extant subspecies and to the Atlantic coast subspecies. Nuclear diversity was low compared to other subspecies, but similar across subpopulations. Samples grouped as one population when analyzed by Principal Component Analysis, Bayesian modelling and genetic distance metrics. Limited genetic emigration was detected from one putative migrant. Relatedness was significantly different for sparrows in the most geographically distant subpopulation (A), likely reflecting high self-recruitment and natal site fidelity (P = 0.003). The low to moderate effective population size (NE = 202.4; NE:NC = 0.06) and generation time estimates indicated that unique genetic variation could be lost quickly during stochastic events. The sample sizes were limited, which reduced the power to comprehensively address recent population size reductions and any subsequent loss of genetic diversity.

Funder

United States Geological Survey’s Greater Everglades Priority Ecosystems Science (GEPES) Program

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3