Multiple ictal onset patterns underlie seizure generation in seizure-free patients with temporal lobe epilepsy surgery: an SEEG study

Author:

Xu Cuiping,Zhang Xiaohua,Yan Xiaoming,Ma Kai,Wang Xueyuan,Zhang Xi,Ni Duanyu,Qiao Liang,Yu Tao,Zhang Guojun,Wang Yuping,Li Yongjie

Abstract

Abstract Purpose Seizure originates from different pathological substrate; however, the same pathologies may have distinct mechanisms underlying seizure generation. We aimed to improve the understanding of such mechanisms in patients with temporal lobe epilepsy (TLE) by investigating the stereoelectroencephalography (SEEG) ictal onset patterns (IOPs). Methods We analyzed data from a cohort of 19 consecutive patients explored by SEEG and had 1–3-year seizure-freedom following temporal lobe resection. Results Six IOPs were identified. They were low voltage fast activity (LVFA) (36.5%), rhythmic spikes or spike-waves at low frequency and with high amplitude (34.1%), runs of spikes (10.6%), rhythmic sharp waves (8.2%), low frequency high amplitude repetitive spiking (LFRS) (7.1%), and delta activity (3.5%). All six patterns were found in patients with mesial temporal onset and only two patterns were found in patients with temporal neocortical onset. The most prevalent patterns for patients with mesial temporal onset were rhythmic spikes or spike-waves, followed by LVFA with a mean discharge rate 74 Hz. For patients with temporal neocortical onset, the most prevalent IOP pattern was LVFA with a mean discharge rate 35 Hz, followed by runs of spikes. Compared with Lateral TLE (LTLE), the duration between the onset of the IOPs to the onset of the symptom was longer for patients with MTLE (Mesial TLE) (MTLE:55.7 ± 50.6 s vs LTLE:19.5 ± 16.4 s). Conclusion Multiple IOPs underlie seizure generation in patients with TLE. However, the mesial and lateral temporal lobes share distinct IOPs.

Funder

Capital Medical University Natural Foundation

Beijing Natural Science Foundation

Beijing Hospitals Authority' Ascent Plan

Publisher

Springer Science and Business Media LLC

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3