Applied deep learning in neurosurgery: identifying cerebrospinal fluid (CSF) shunt systems in hydrocephalus patients

Author:

Rhomberg ThomasORCID,Trivik-Barrientos Felipe,Hakim Arsany,Raabe Andreas,Murek Michael

Abstract

Abstract Background Over the recent decades, the number of different manufacturers and models of cerebrospinal fluid shunt valves constantly increased. Proper identification of shunt valves on X-ray images is crucial to neurosurgeons and radiologists to derive further details of a specific shunt valve, such as opening pressure settings and MR scanning conditions. The main aim of this study is to evaluate the feasibility of an AI-assisted shunt valve detection system. Methods The dataset used contains 2070 anonymized images of ten different, commonly used shunt valve types. All images were acquired from skull X-rays or scout CT-images. The images were randomly split into a 80% training and 20% validation set. An implementation in Python with the FastAi library was used to train a convolutional neural network (CNN) using a transfer learning method on a pre-trained model. Results Overall, our model achieved an F1-score of 99% to predict the correct shunt valve model. F1-scores for individual shunt valves ranged from 92% for the Sophysa Sophy Mini SM8 to 100% for several other models. Conclusion This technology has the potential to automatically detect different shunt valve models in a fast and precise way and may facilitate the identification of an unknown shunt valve on X-ray or CT scout images. The deep learning model we developed could be integrated into PACS systems or standalone mobile applications to enhance clinical workflows.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3