Biological outliers: essential elements to understand the causes and consequences of reductions in maximum photochemical efficiency of PSII in plants

Author:

Julián Clara,Villadangos Sabina,Jené Laia,Pasques Ot,Pintó-Marijuan Marta,Munné-Bosch SergiORCID

Abstract

Abstract Main conclusion By studying Cistus albidus shrubs in their natural habitat, we show that biological outliers can help us to understand the causes and consequences of maximum photochemical efficiency decreases in plants, thus reinforcing the importance of integrating these often-neglected data into scientific practice. Abstract Outliers are individuals with exceptional traits that are often excluded of data analysis. However, this may result in very important mistakes not accurately capturing the true trajectory of the population, thereby limiting our understanding of a given biological process. Here, we studied the role of biological outliers in understanding the causes and consequences of maximum photochemical efficiency decreases in plants, using the semi-deciduous shrub C. albidus growing in a Mediterranean-type ecosystem. We assessed interindividual variability in winter, spring and summer maximum PSII photochemical efficiency in a population of C. albidus growing under Mediterranean conditions. A strong correlation was observed between maximum PSII photochemical efficiency (Fv/Fm ratio) and leaf water desiccation. While decreases in maximum PSII photochemical efficiency did not result in any damage at the organ level during winter, reductions in the Fv/Fm ratio were associated to leaf mortality during summer. However, all plants could recover after rainfalls, thus maximum PSII photochemical efficiency decreases did not result in an increased mortality at the organism level, despite extreme water deficit and temperatures exceeding 40ºC during the summer. We conclude that, once methodological outliers are excluded, not only biological outliers must not be excluded from data analysis, but focusing on them is crucial to understand the causes and consequences of maximum PSII photochemical efficiency decreases in plants.

Funder

Generalitat de Catalunya

Agencia Estatal de Investigación

Universitat de Barcelona

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3