Shape control of moderately thick piezoelectric beams

Author:

Schoeftner JuergenORCID

Abstract

AbstractThe present contribution focuses on shape control of thick beam-type structures. First the governing equations of a multi-layered beam are derived by taking advantage of the Timoshenko assumptions and the constitutive relations of piezoelectric materials. The deflection curves are explicitly given for a piezoelectric cantilever subjected to a polynomial distribution of the vertical load and the applied electric voltage. In order to find a solution for the optimal shape control voltage an objective function, which depends on the quadratic deflection curve over the beam length, is minimized. Finally several benchmark examples are given for thick beams and the outcome is compared to finite element results and previously derived shape control results from the scientific literature that hold for thin piezoelectric beams. The presented shape control method shows a better agreement with the numerical outcome than the analytical shape control results within the Bernoulli-Euler theory, but the desired voltage distribution only slightly differs from the outcome for thin beams. Furthermore it is found that for a given total thickness-to-length ratio piezoelectric bimorph structures may be more difficult to be perfectly controlled than three-layer beams with thin piezoelectric layers. This is due to higher order piezoelectric effects which are not considered by the present theory (e.g. the thickness deformation caused by the thickness piezoelectric coupling constant).

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3