Mixed-conducting ceramic-carbonate membranes exhibiting high CO2/O2 permeation flux and stability at high temperatures

Author:

Ortega-Lugo R.,Fabián-Anguiano J. A.,Ovalle-Encinia O.,Gómez-Yánez C.,Zeifert B. H.,Ortiz-Landeros J.

Abstract

AbstractThis investigation demonstrates the feasibility to fabricate high quality ceramic-carbonate membranes based on mixed-conducting ceramics. Specifically, it is reported the simultaneous CO2/O2 permeation and stability properties of membranes constituted by a combination of ceramic and carbonate phases, wherein the microstructure of the ceramic part is composed, in turn, of a mixture of fluorite and perovskite phases. These ceramics showed ionic and electronic conduction, and at the operation temperature, the carbonate phase of the membranes is in liquid state, which allows the transport of $$\rm{CO}_3^{2-}$$CO32 and O2− species via different mechanisms. To fabricate the membranes, the ceramic powders were uniaxially pressed in a disk shape. Then, an incipient sintering treatment was carried out in such a way that a highly porous ceramic was obtained. Afterwards, the piece is densified by the infiltration of molten carbonate. Characterization of the membranes was accomplished by SEM, XRD, and gas permeation techniques among others. Thermal and chemical stability under an atmosphere rich in CO2 was evaluated. CO2/O2 permeation and long-term stability measurements were conducted between 850 and 940 °C.The best permeation-separation performance of membranes of about 1 mm thickness, showed a maximum permeance flux of about 4.46×10−7 mol·m−2·s−2·Pa−1 for CO2 and 2.18×10−7 mol·m−2·s−1·Pa−1 for O2 at 940 °C. Membranes exhibited separation factor values of 150–991 and 49–511 for CO2/N2 and O2/N2 respectively in the studied temperature range. Despite long-term stability test showed certain microstructural changes in the membranes, no significant detriment on the permeation properties was observed along 100 h of continuous operation.

Publisher

Springer Science and Business Media LLC

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3