Experimental and DFT studies of flower-like Ni-doped Mo2C on carbon fiber paper: A highly efficient and robust HER electrocatalyst modulated by Ni(NO3)2 concentration

Author:

Zhang Lei,Hu Zhihui,Huang Juntong,Chen Zhi,Li Xibao,Feng Zhijun,Yang Huiyong,Huang Saifang,Luo Ruiying

Abstract

AbstractDeveloping highly efficient and stable non-precious metal catalysts for water splitting is urgently required. In this work, we report a facile one-step molten salt method for the preparation of self-supporting Ni-doped Mo2C on carbon fiber paper (Ni-Mo2CCB/CFP) for hydrogen evolution reaction (HER). The effects of nickel nitrate concentration on the phase composition, morphology, and electrocatalytic HER performance of Ni-doped Mo2C@CFP electrocatalysts was investigated. With the continuous increase of Ni(NO3)2 concentration, the morphology of Mo2C gradually changes from granular to flower-like, providing larger specific surface area and more active sites. Doping nickel (Ni) into the crystal lattice of Mo2C largely reduces the impedance of the electrocatalysts and enhances their electrocatalytic activity. The as-developed Mo2C-3 M Ni(NO3)2/CFP electrocatalyst exhibits high catalytic activity with a small overpotential of 56 mV at a current density of 10 mA·cm−2. This catalyst has a fast HER kinetics, as demonstrated by a very small Tafel slope of 27.4 mV·dec−1, and persistent long-term stability. A further higher Ni concentration had an adverse effect on the electrocatalytic performance. Density functional theory (DFT) calculations further verified the experimental results. Ni doping could reduce the binding energy of Mo-H, facilitating the desorption of the adsorbed hydrogen (Hads) on the surface, thereby improving the intrinsic catalytic activity of Ni-doped Mo2C-based catalysts. Nevertheless, excessive Ni doping would inhibit the catalytic activity of the electrocatalysts. This work not only provides a simple strategy for the facile preparation of non-precious metal electrocatalysts with high catalytic activity, but also unveils the influence mechanism of the Ni doping concentration on the HER performance of the electrocatalysts from the theoretical perspective.

Publisher

Tsinghua University Press

Subject

Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3