The role of pictorial cues and contrast for camouflage

Author:

Kelley Jennifer L.,Jessop Anna-Lee,Kelley Laura A.,Troscianko Jolyon

Abstract

AbstractShadows that are produced across the surface of an object (self-shadows) are potentially an important source of information for visual systems. Animal patterns may exploit this principle for camouflage, using pictorial cues to produce false depth information that manipulates the viewer’s detection/recognition processes. However, pictorial cues could also facilitate camouflage by matching the contrast (e.g. due to shadows) of 3D backgrounds. Aside from studies of countershading (patterning that may conceal depth information), the role of self-shadows in camouflage patterns remains unclear. Here we investigated whether pictorial cues (self-shadows) increase the survival probability of moth-like prey presented to free-living wild bird predators relative to targets without these cues. We manipulated the presence of self-shadows by adjusting the illumination conditions to produce patterned targets under directional lighting (lit from above or from below; self-shadows present) or diffuse lighting (no self-shadows). We used non-patterned targets (uniform colour) as controls. We manipulated the direction of illumination because it has been linked with depth perception in birds; objects lit from above may appear convex while those lit from below can appear concave. As shadows influence contrast, which also determines detectability, we photographed the targets in situ over the observation period, allowing us to evaluate the effect of visual metrics on survival. We found some evidence that patterned targets without self-shadows had a lower probability of survival than patterned targets with self-shadows and targets with uniform colour. Surprisingly, none of the visual metrics explained variation in survival probability. However, predators increased their foraging efficiency over time, suggesting that predator learning may have overridden the benefits afforded by camouflaging coloration.

Funder

University of Western Australia

Publisher

Springer Science and Business Media LLC

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3