Metallothionein ameliorates airway epithelial apoptosis upon particulate matter exposure: role of oxidative stress and ion homeostasis

Author:

Li Bin,Huang Nannan,Wei Shengnan,Meng Qingtao,Wu Shenshen,Aschner Michael,Li Xiaobo,Chen Rui

Abstract

Abstract Purpose To investigate the mechanism underlying particulate matter (PM) exposure-induced oxidative stress and potential rescue strategies against pulmonary damage in this context. Methods A combination of omics technology and bioinformatic analysis were used to uncover mechanisms underlying cellular responses to PM exposure in human bronchial epithelia (HBE) cells and imply the potential rescue. Results Our results implicated that oxidative stress, metal ion homeostasis, and apoptosis were the major cellular responses to PM exposure in HBE cells. PM exposure disrupted oxidative phosphorylation (OXPHOS)-related gene expressions in HBE cells. Rescuing the expression of these genes with supplemental coenzyme Q10 (Co Q10) inhibited reactive oxygen species (ROS) generation; however, it only partially protected HBEs against PM exposure-induced apoptosis. Further, metallothionein (MT)-encoding genes associated with metal ion homeostasis were significantly induced in HBE cells, which was transcriptionally regulated by specificity protein 1 (SP1). SP1 knock-down (KD) aggravated PM-induced apoptosis in HBE cells, suggesting it plays a role in MT induction. Subsequent studies corroborated the protective role of MT by showing that exogenous MT supplement demonstrated effective protection against PM-induced oxidative stress and apoptosis in HBE cells. Importantly, exogenous MT supplement was shown to reduce ROS generation and apoptosis in airway epithelia in both HBE cells and a PM-inhaled murine model. Conclusion This study demonstrates that the impact of MT on airway epithelia by suppressing oxidative stress and maintaining metal ion homeostasis is beneficial in attenuating damage to pulmonary cells undergoing PM exposure.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3