Abstract
AbstractThe raccoon is listed among the invasive alien species of EU concern requiring management actions. Projections of its global distribution have been mainly based on climatic variables so far. In this study, we aim to address the impact of land cover (LC) on the raccoon distribution in North America and Europe. First, we identified the LC types in which the observation sites are predominantly located to derive preferred LC types. Second, we used an ecological niche modelling (ENM) approach to evaluate the predictive power of climatic and LC information on the current distribution patterns of raccoons in both ranges. Raccoons seem to be more often associated to forested areas and mixed landscapes, including cropland and urban areas, but underrepresented in vegetation-poor areas, with patterns largely coinciding in both ranges. In order to compare the predictive power of climate variables and land cover variables, we conducted principal component analyses of all variables in the respective variable sets (climate variables and land cover variables) and used all PC variables that together explain 90% of the total variance in the respective set as predictors. Land cover only models resulted in patchy patterns in the projected habitat suitabilities and showed a higher performance compared to the climate only models in both ranges. In Europe, the land cover habitat suitability seems to exceed the current observed occurrences, which could indicate a further spread potential of the raccoon in Europe. We conclude that information on land cover types are important drivers, which explain well the spatial patterns of the raccoon. Consideration of land cover could benefit efforts to control invasive carnivores and contribute to better management of biodiversity, but also human and animal health.
Funder
Deutsche Bundesstiftung Umwelt
Uniscientia Stiftung
Johann Wolfgang Goethe-Universität, Frankfurt am Main
Publisher
Springer Science and Business Media LLC
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Ecology, Evolution, Behavior and Systematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献