LSTM-based low-impedance fault and high-impedance fault detection and classification
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s00202-024-02381-0.pdf
Reference25 articles.
1. Belagoune S, Bali N, Bakdi A, Baadji B, Atif K (2021) Deep learning through LSTM classification and regression for transmission line fault detection, diagnosis and location in large-scale multi-machine power systems. Measurement 177:109330
2. Rai P, Londhe ND, Raj R (2021) Fault classification in power system distribution network integrated with distributed generators using CNN. Electr Power Syst Res 192:106914
3. Moradzadeh A, Teimourzadeh H, Mohammadi-Ivatloo B, Pourhossein K (2022) Hybrid CNN-LSTM approaches for identification of type and locations of transmission line faults. Int J Electr Power Energy Syst 135:107563
4. Gadanayak DA, Mallick RK (2019) Inter-harmonics based high impedance fault detection in distribution systems using maximum overlap wavelet packet transform and a modified empirical mode decomposition. Int J Electr Power & Energy Syst 112:282–293
5. Aboshady FM, Thomas DWP, Sumner M (2019) A new single end wideband impedance-based fault location scheme for distribution systems. Electr Power Syst Res 173:263–270
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. An alternate method to detect and classify the transmission line faults using Clarke’s transformed currents;Electric Power Systems Research;2024-11
2. Detection and Classification of EHV Transmission Line Faults Based on Sign of Reactive Power;Arabian Journal for Science and Engineering;2024-08-28
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3