Evaluation of extra pixel interpolation with mask processing for medical image segmentation with deep learning

Author:

Rukundo Olivier

Abstract

AbstractCurrent mask processing operations rely on interpolation algorithms that do not produce extra pixels, such as nearest neighbor (NN) interpolation, as opposed to algorithms that do produce extra pixels, like bicubic (BIC) or bilinear (BIL) interpolation. In our previous study, the author proposed an alternative approach to NN-based mask processing and evaluated its effects on deep learning training outcomes. In this study, the author evaluated the effects of both BIC-based image and mask processing and BIC-and-NN-based image and mask processing versus NN-based image and mask processing. The evaluation revealed that the BIC-BIC model/network was an 8.9578% (with image size 256 × 256) and a 1.0496% (with image size 384 × 384) increase of the NN-NN network compared to the NN-BIC network which was an 8.3127% (with image size 256 × 256) and a 0.2887% (with image size 384 × 384) increase of the NN-NN network.

Funder

Medical University of Vienna

Publisher

Springer Science and Business Media LLC

Reference15 articles.

1. Rukundo, O.: Effects of image size on Deep Learning. Electronics. 12, 985 (2023)

2. Rukundo, O., Schmidt, S.: Stochastic rounding for image interpolation and scan Conversion. Int. J. Adv. Comput. Sci. Appl. 13, 13–22 (2022)

3. Rukundo, O., Schmidt, S.E., Von Ramm, O.T.: Software implementation of optimized bicubic interpolated scan conversion in echocardiography, arXiv:2005.11269, (2020)

4. Rukundo, O., Schmidt, S.E.: Aliasing artefact index for image interpolation quality assessment, Proc. SPIE 10817, Optoelectronic Imaging and Multimedia Technology V, 108171E, (2018)

5. Parker, J.A., Kenyon, R.V., Troxel, D.E.: Comparison of interpolating methods for image Resampling. in IEEE Trans. Med. Imaging, 2(1), pp. 31–39, March 1983

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3