Improving corneal nerve segmentation using tolerance Dice loss function

Author:

Colonna Alessia,Scarpa Fabio

Abstract

AbstractIn vivo confocal microscopy is a technique that allows to acquire images of the corneal layers in a rapid and noninvasive way. Analysis of sub-basal nerve allows obtaining important clinical information regarding the eye and the human body’s health. To obtain that information, it is necessary to correctly identify and trace the nerve fibers. Manual analysis is time-consuming and subjective. Numerous automatic algorithms have been proposed to overcome these problems, but none have been included in clinical practice yet. In this work, we take advantage of deep learning techniques. We present an analysis of the performances obtained through UNet (baseline) to which various architectural solutions have been added to boost performance. The variation of the tracing results is also analyzed according to the use of different loss functions, one of which is introduced here: It considers a tolerance margin (Dice with tolerance). The investigated configurations have been shown to be capable of improving the tracing of corneal nerve fibers. The model with attention modules and atrous-spatial pyramid pooling modules showed the greatest improvement compared to the baseline, increasing in the evaluation score from 86.51 to 90.21%. Furthermore, the proposed loss function further increases the results (achieving 92.44%).

Funder

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Signal Processing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3