The influence of climate model uncertainty on fluvial flood hazard estimation

Author:

Beevers LindsayORCID,Collet Lila,Aitken Gordon,Maravat Claire,Visser Annie

Abstract

AbstractFloods are the most common and widely distributed natural hazard, threatening life and property worldwide. Governments worldwide are facing significant challenges associated with flood hazard, specifically: increasing urbanization; against the background of uncertainty associated with increasing climate variability under climate change. Thus, flood hazard assessments need to consider climate change uncertainties explicitly. This paper explores the role of climate change uncertainty through uncertainty analysis in flood modelling through a probabilistic framework using a Monte Carlo approach and is demonstrated for case study catchment. Different input, structure and parameter uncertainties were investigated to understand how important the role of a non-stationary climate may be on future extreme flood events. Results suggest that inflow uncertainties are the most influential in order to capture the range of uncertainty in inundation extent, more important than hydraulic model parameter uncertainty, and thus, the influence of non-stationarity of climate on inundation extent is critical to capture. Topographic controls are shown to create tipping points in the inundation–flow relationship, and these may be useful and important to quantify for future planning and policy. Full Monte Carlo analysis within the probabilistic framework is computationally expensive, and there is a need to explore more time-efficient strategies which may result in a similar estimate of the full uncertainty. Simple uncertainty quantification techniques such as Latin hypercube sampling approaches were tested to reduce computational burden.

Funder

Engineering and Physical Sciences Research Council

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

Reference48 articles.

1. Aistleitner C, Hofer M, Tichy R (2012) A central limit theorem for Latin hypercube sampling with dependence and application to exotic basket option pricing. Int J Theor Appl Finance 15(7):1250046. https://doi.org/10.1142/S021902491250046X

2. Ali MA, Solomatine D, Baldassarre G (2015) Assessing the impact of different sources of topographic data on 1-D hydraulic modelling of floods. Hydrol Earth Syst Sci 19:631–643. https://doi.org/10.5194/hess-19-631-2015

3. Allen MR, Dube OP, Solecki W, Aragón-Durand F, Cramer W, Humphreys S, Kainuma M, Kala J, Mahowald N, Mulugetta Y, Perez R, Wairiu M, Zickfeld K (2018) Framing and context. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) Global warming of 1.5 °C. An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty

4. Apel H, Thieken AH, Merz B, Blöschl G (2004) Flood risk assessment and associated uncertainty. Nat Hazards Earth Syst Sci 4:295–308

5. Apel H, Thieken AH, Merz B, Blöschl G (2006) A probabilistic modelling system for assessing flood risks. Nat Hazards 38:79–100. https://doi.org/10.1007/s11069-005-8603-7

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3