A Stochastic Model of an Early Warning System for Detecting Anomalous Incidence Values of COVID-19

Author:

Duarte Ana Filipa,Soares Amílcar,Pereira Maria João,Peralta-Santos AndréORCID,Leite Pedro Pinto,Azevedo LeonardoORCID

Abstract

AbstractThe ability to identify and predict outbreaks during epidemic and pandemic events is critical to the development and implementation of effective mitigation measures by the relevant health and political authorities. However, the spatiotemporal prediction of such diseases is not straightforward due to the highly non-linear behaviour of its evolution in both space and time. The methodology proposed herein is the basis of an early warning system to predict short-term anomalous values (i.e., high and low values) of the incidence of COVID-19 at the municipality level for mainland Portugal. The proposed modelling tool combines stochastic sequential simulation and machine learning, namely symbolic regression, to model the spatiotemporal evolution of the disease. The machine learning component is used to model the 14-day incidence rate curves of COVID-19, as provided by the Portuguese Directorate-General for Health, while the geostatistical simulation component models the spatial distribution of these predictions, for a simulation grid comprising the metropolitan area of Lisbon, following a pre-defined spatial continuity pattern. The method is illustrated for a period of 5 months during 2021, and considering the entire set of 19 municipalities belonging to the metropolitan area of Lisbon, Portugal. The results show the ability of the early warning system to predict and detect anomalous high and low incidence rate values for different periods of the pandemic event during this period.

Funder

Universidade de Lisboa

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences,Mathematics (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3