Systematics of aligned axions

Author:

Bachlechner Thomas C.,Eckerle Kate,Janssen Oliver,Kleban Matthew

Abstract

Abstract We describe a novel technique that renders theories of N axions tractable, and more generally can be used to efficiently analyze a large class of periodic potentials of arbitrary dimension. Such potentials are complex energy landscapes with a number of local minima that scales as $$ \sqrt{N!} $$ N ! , and so for large N appear to be analytically and numerically intractable. Our method is based on uncovering a set of approximate symmetries that exist in addition to the N periods. These approximate symmetries, which are exponentially close to exact, allow us to locate the minima very efficiently and accurately and to analyze other characteristics of the potential. We apply our framework to evaluate the diameters of flat regions suitable for slow-roll inflation, which unifies, corrects and extends several forms of “axion alignment” previously observed in the literature. We find that in a broad class of random theories, the potential is smooth over diameters enhanced by N 3/2 compared to the typical scale of the potential. A Mathematica implementation of our framework is available online.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Testing the weak cosmic censorship conjecture in short haired black holes;The European Physical Journal C;2024-05-14

2. Cosmic birefringence from the Axiverse;Journal of Cosmology and Astroparticle Physics;2023-11-01

3. Axion flux monodromy discharges relax the cosmological constant;Journal of Cosmology and Astroparticle Physics;2023-11-01

4. Recent Progress in the Physics of Axions and Axion-Like Particles;Annual Review of Nuclear and Particle Science;2021-09-21

5. Instanton resummation and the Weak Gravity Conjecture;Journal of High Energy Physics;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3