Understanding phase-transfer catalytic synthesis of fullerenol and its interference from carbon dioxide and ozone

Author:

Chokaouychai SirikanyaORCID,Zhang QiORCID

Abstract

AbstractPhase-transfer catalytic reaction involving the use of tetrabutylammonium hydroxide (TBAH) as catalyst and sodium hydroxide (NaOH) solution as the source of hydroxide ions is among the popular choices for synthesis of fullerenol, the polyhydroxylated fullerene. To further understand the process, two experiments were conducted to preliminarily explore the influences of the amount of TBAH and NaOH, respectively, in terms of the achieved level of hydroxylation (i.e. number of hydroxyl groups per fullerenol molecule). The process responded to the variation of the amount of TBAH (over a twofold series of 3–192 drops, average volume 0.0223 ± 0.0004 ml per drop) in a nonlinear manner with a local maximum achieved from 24 drops TBAH (giving 13 OH groups) and a local minimum from 48 drops (giving 8 groups). To the variation of the amount of NaOH (over the range of 0.5–8.0 ml NaOH), the fitted function of the process response resembled Freundlich adsorption isotherm, with an initially increasing trend before levelling off at 4.0 ml NaOH (giving 15 OH groups). It is therefore suggested that fullerene hydroxylation could be explained by liquid–solid adsorption. In addition, it was found that ambient carbon dioxide led to the existence of sodium carbonate in the bulk of the collected product (although not chemically bound). It was also discovered that ambient ozone adversely affected fullerenol synthesis by converting C60 fullerene into fullerene epoxide (C60O). The affected syntheses thus produced epoxide-containing fullerenol instead.

Funder

Cranfield University

Publisher

Springer Science and Business Media LLC

Subject

General Chemistry

Reference43 articles.

1. H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)

2. A. Hirsch, M. Brettreich, Fullerenes: Chemistry and Reactions (Wiley, Weinheim, 2004), pp. 1–48

3. L.Y. Chiang, J.W. Swirczewski, C.S. Hsu, S.K. Chowdhury, S. Cameron, K. Creegan, J. Chem. Soc. Chem. Commun. 62, 24 (1992)

4. L.Y. Chiang, R.B. Upasani, J.W. Swirczewski, J. Am. Chem. Soc. 114, 10154 (1992)

5. J. Li, A. Takeuchi, M. Ozawa, Z. Li, K. Saigo, K. Kitazawa, J. Chem. Soc. Chem. Commun. 256, 822 (1993)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3