Friction between a single platelet and fibrinogen

Author:

Wang Yuhe,Li Yan,Zhang Shuguang,Chen Haosheng,Li Yongjian

Abstract

AbstractFriction has been considered to mediate physiological activities of cells, however, the biological friction between a single cell and its ligand-bound surface has not been thoroughly explored. Herein, we established a friction model for single cells based on an atomic force microscopy (AFM) combined with an inverted fluorescence microscopy (IFM) to study the friction between a highly sensitive platelet and fibrinogen-coated surface. The study revealed that the friction between the platelet and fibrinogen-coated tip is mainly influenced by specific ligand–receptor interaction. Further, we modeled the biological friction, which consists of specific interaction, non-specific interaction, and mechanical effect. Besides, the results suggested that the velocity can also affect specific ligand–receptor interactions, resulting in the friction change and platelet adhesion to fibrinogen surfaces. The study built a friction model between a single cell and its ligand-bound surface and provided a potential method to study the biological friction by the combination of AFM and IFM.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3